Responsive image
博碩士論文 etd-0705114-161825 詳細資訊
Title page for etd-0705114-161825
論文名稱
Title
以覆於光纖末端之聚合物微透鏡結構製作Fabry-Pérot光纖干涉儀
Fabry-Pérot Fiber Interferometers Based on Polymer Microlenses structure on A Fiber Tip
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-08-05
關鍵字
Keywords
光纖干涉儀
Fiber Interferometers
統計
Statistics
本論文已被瀏覽 5688 次,被下載 93
The thesis/dissertation has been browsed 5688 times, has been downloaded 93 times.
中文摘要
近年來,各種不同結構的Fabry-Pérot光纖干涉儀被提出研究及改良,因為光學干涉現象對於外在環境擾動具有高度的敏感性,所以干涉儀被廣泛地作為高敏感度的感測器使用。在本論文中,我們透過可固化聚合物膠體的表面張力特性,在光纖末端製作出微透鏡Fabry-Pérot光纖干涉儀,其原理是透過微透鏡的結構,使元件存在光纖/聚合物以及聚合物/空氣的兩道交界面,當入射光通過聚合物微透鏡時,會在兩側產生具有相位差的反射光,因此形成干涉頻譜。由量測結果我們發現,當微透鏡共振腔結構的曲率半徑增加時,代表共振腔長度縮減,會使相位差縮小,干涉條紋的平均間距會增加,滿足了理論公式與其他文獻中的結果,證明了我們可以成功地利用可固化聚合物製作出微透鏡Fabry-Pérot光纖干涉儀。
我們將製作出的微透鏡Fabry-Pérot光纖干涉儀進行環境溫度、環境折射率、外在氣壓以及物件位移擠壓的感測,觀察干涉頻譜的特徵變化,並計算微透鏡光纖干涉儀對環境參數之靈敏度。由量測結果可知,當我們採用PDMS製作曲率半徑為126.14μm之微透鏡光纖干涉儀時,干涉頻譜會隨著環境溫度變化產生位移,其溫度敏感度為634pm/℃,因此可作為環境溫度之感測器使用。此外,隨著環境折射率逐漸增加,干涉波峰位置強度會以線性的趨勢逐漸減小,曲率半徑為78.82μm的PDMS元件之折射率敏感度可達-82.26dB/RIU。而隨著外在環境氣壓增加,干涉頻譜位置也會往長波長的方向位移,當PDMS微透鏡干涉儀之曲率半徑為75μm時,得到的壓力敏感度為89pm/psi。而利用物件去擠壓感測端時,測得的干涉頻譜間距會隨物件位移量增大而有增加的趨勢,由公式推算干涉頻譜所對應的共振腔長度,其趨勢變化與實驗一致。
Abstract
In this dissertation we proposed a Fabry-Pérot fiber interferometer based on a polymer microlens structure on the endface of a single-mode fiber. We can simply attach a fixed mass of polymer at the fiber end to form a microlens structure due to the surface tension effect. As the light wave propagates to the interfaces of SMF/polymer and polymer/air, we can obtain two reflective light beams with different optical paths to form the reflective interference spectrum. Besides, as the curvature of radius of the microlens structure increases, the average spacing of the interference fringe becomes larger in the same wavelength range.
We have demonstrated the sensing applications of the microlens-based Fabry-Pérot fiber interferometers for temperature, surrounding refractive index, and pressure. The temperature sensitivity between 25℃ to 65℃ is 634pm/℃ for the 126.14μm microlens-based fiber interferometer. As we increase the surrounding refractive index from 1.33 to 1.4071, the 78.82μm microlens-based fiber interferometer shows a 6.38dB peak intensity difference, and the refractive index sensitivity is -82.26dB/RIU. In addition, the measured pressure sensitivity for the 75μm microlens-based fiber interferometer is 89pm/psi. We have also compressed the microlens structure by a movable object and found that the average spacing of the interference fringe becomes larger. As a result, our fabricated microlens-based Fabry-Pérot fiber interferometers can be utilized as useful sensors.
目次 Table of Contents
中文摘要…………………………………………………………………..…... .i
Abstract………………………………………………………..………………..ii
目錄………………………………………………………………….…… ......iii
表目錄…………………………………………………………..……………...v
圖目錄………………………………………………………….……………...vi
第一章 緒論……….…………………………………………………...…...........…1
1-1 光纖干涉儀………………………………………...……………….1
1-2 光纖干涉儀的種類與應用………………………………………....5
1-3 研究動機與目的………………………………………………...…11
第二章 Fabry-Pérot光纖式干涉儀…………………...……..........…...........13
2-1 Fabry-Péro干涉儀的原理…………………………………..…....13
2-2 Fabry-Pérot干涉儀的應用……………………………..…….....…20
2-3 Fabry-Pérot光纖干涉儀………………………………..………….22
第三章 微透鏡Fabry-Pérot光纖干涉儀的製作……………..……..……....25
3-1 Fabry-Pérot光纖干涉儀設計..……………………………….....…25
3-2 聚合物材料介紹………………………………………...…………28
3-3 元件製作方法…………………………………………………..….31
第四章 微透鏡Fabry-Pérot光纖干涉儀基本特性量測……….….……….......35
4-1 元件量測架設………………………………………….…………..35
4-2 元件量測結果與討論……………………….…………….……….36
第五章 微透鏡Fabry-Pérot光纖干涉儀感測特性量測…….…………………43
5-1 溫度感測特性………………………………………….…………..43
5-2 折射率感測特性……...……………………………………………50
5-3 壓力感測特性………………………...………..…………….…….54
5-4 結構擠壓測試………………...……………………………………57
第六章 結論………………………………………………………………..........61
第七章 參考文獻…………………………………………………………….......62
參考文獻 References
[1] Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, and B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J., vol. 11, pp. 1423-1426 (2011).
[2] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, pp. 133-135 (2012).
[3] V. Lanticq, M. Quiertant, E. Merliot, and S. Delépine-Lesoille, “Brillouin sensing cable: design and experimental validation,” IEEE Sens. J., vol. 8, pp. 1194-1201 (2008).
[4] C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express, vol. 19, pp. A1175-A1183 (2011).
[5] A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 17, pp. 1250-1252 (2005).
[6] H. Ohno, H. Naruse, M. Kihara, and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor,” Opt. Fiber Technol., vol. 7, pp. 45-64 (2001).
[7] Y. J. Rao and D. A. Jackson, “Principles of fiber-optic interferometry,” Opt. Fiber Sensor Technol., pp. 167 -191 (2000).
[8] K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals (Kluwer Academic Publishers, 2000), pp. 167-190.
[9] J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett., vol. 29, pp. 346-348 (2004).
[10] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711-5720 (2007).
[11] Y J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Pérot interferometer,” Opt. Lett., vol. 34, pp. 2441-2443 (2009).
[12] J. M. Vaughan, The Fabry-Pérot Interferometer: History, Theory, Practice, and Applications (Institute of Physics, Bristol, 1989).
[13] G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach–Zehnder interferometer,” Opt. Lett., vol. 21, pp. 302-304 (1996).
[14] B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightw. Technol., vol. 26, pp. 1064-1078 (2008).
[15] Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Opt. Fiber Technol., vol. 12, pp. 227-237 (2006)
[16] F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Pérot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett., vol. 37, pp. 1505-1507 (2012).
[17] J. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett., vol. 37, pp. 4672-4674 (2012).
[18] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Express, vol. 15, pp. 14123-14128 (2007).
[19] B. Dong, J. Z. Hao, T. S. Zhang, and J. L. Lim, “High sensitive fiber-opticliquid refractive index tip sensor based on a simple inline hollow glass micro-sphere,” Sens. Actuators B, Chem., vol. 171, pp.405 -408 (2012).
[20] D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Pérot interferometer sensor,” Opt. Lett., vol. 30, pp. 3000-3002 (2005).
[21] T. Wei, Y. Han, H-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Pérot interferometer fabricated with a femtosecond laser,” Opt. Lett., vol. 33, pp. 536-538 (2008).
[22] V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sen. Actuators A, vol. 138, pp. 248-260 (2007).
[23] C. Lee, L. Lee, H. Hwang, and J. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett., vol. 24, pp. 149-151 (2012).
[24] N. Liu, J. Hui, C. Sun, J. Dong, L. Zhang, and H. Xiao, “Nanoporous zeolite thin film-based fiber intrinsic Fabry-Pérot interferometric sensor for detection of dissolved organics in water,” Sensors, vol. 6, pp. 835-847 (2006).
[25] J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett., vol. 29, pp. 346-248 (2004).
[26] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711-5720 (2007).
[27] H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period grating and one point collapsing of air holes,” Opt. Lett., vol. 33, pp. 812-814 (2008).
[28] D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt., vol. 44, pp. 5368-5373 (2005).
[29] C. L. Lee, C. H. Hung, C. M. Li, and Y. W. You, “Simple air-gap fiber Fabry-Pérot interferometers based on a fiber endface with sn-microsphere overlay,” Opt. Commun., vol. 28, pp. 4395-4399 (2012).
[30] K. R. Kim, S. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photon. Technol. Lett., vol. 15, pp. 1110-1102 (2003).
[31] J. Poirson, F. Bretenaker, M. Vallet, and A. L. Floch, “Analytical and experimental study of ringing effects in a Fabry-Pérot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B, vol. 14, pp. 2811-2817 (1997).
[32] P. L. Chen, K. C. Lin, W. C. Chuang, Y. C. Tzeng, K. Y. Lee, and W. Y. Lee, “Analysis of a liquid crystal Fabry-Pérot etalon filter: A novel model,” IEEE Photon. Technol. Lett., vol. 9, pp. 467-469 (1997).
[33] F. A. Jenkins, and H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p.277.
[34] A. Yariv and P. Yeh., Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, New York, 2007).
[35] X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement,” IEEE Sens. J., vol 11, pp. 1602-1606 (2011).
[36] Z. Zheng, G. Yang, H. Li, and X Liu, “Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range,” Opt. Express, vol. 19, pp. 2158-2164 (2011).
[37] D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag., vol. 36, pp. 50-55 (1998).
[38] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263 (2008).
[39] T. W. Odom, V. R. Thalladi, J. C. Love, and G. M. Whitesides, “Generation of 30−50 nm structure using easily fabricated, composite PDMS masks,” J. Am. Chem. Soc., vol. 124, pp. 12112-12113 (2002).
[40] S. Y. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett., vol. 18, pp. 2191-2193 (2006).
[41] W. Qiu, PDMS Based Waveguides for Microfluidics and EOCB. (Doctoral dissertation, Zhejiang University, 2012).
[42] H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express, vol. 15, pp. 11328-11335 (2007).
[43] S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B, vol. 104, pp. 93-97 (2011).
[44] B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett., vol. 96, pp. 251109 (2010).
[45] D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Pérot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt., vol. 51, pp. 1033-1036 (2012).
[46] C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber,” Opt. Lett., vol. 36, pp. 412-414 (2011).
[47] 蘇溥鈞, “長週期光纖光柵感測器,” 逢甲大學電機工程學系碩士班碩士論文(2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code