Responsive image
博碩士論文 etd-0705114-181647 詳細資訊
Title page for etd-0705114-181647
論文名稱
Title
A356鋁合金及Al-Si共晶合金的方向性凝固研究
The directional solidification study of A356 aluminum alloy and Al-Si eutectic alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-08
繳交日期
Date of Submission
2014-08-06
關鍵字
Keywords
Al-Si系共晶合金、A356鋁合金、拉伸速率、凝固偏析、方向性凝固
Al-Si eutectic system, A356 aluminum, extruding rate, Solidification segregation, Directional solidification
統計
Statistics
本論文已被瀏覽 5655 次,被下載 53
The thesis/dissertation has been browsed 5655 times, has been downloaded 53 times.
中文摘要
近來,越來越多研究是使用方向性凝固來進行,其如此受歡迎的主要原因有可以藉此來探討凝固偏析的行為,因為在方向性凝固中其枝蔓晶會長大許多這會有利於我們進行分析,而另一個原因則是方向性凝固常被利用來改善材料的顯微組織,並希望藉此改善其機械性質
,特別是在共晶材料裡,一般利用共晶材料來進行方向性凝固我們可以得到in suit的複合材料其通常具有良好熱穩定性及機械性質,也因此方向性凝固通常被利用來製造良好排列及細小散佈相的結構。
本實驗主要是去探討方向性凝固中溫度梯度、拉伸速率及化學成分調節對材料顯微結構的影響。在A356鋁合金及其添加1wt. % Mn的合金裡我們可以明顯發現其Al的枝蔓晶比一般自然冷卻的顯微組織要大的很多,這有利於我們去進行定量分析。而改變拉伸速率對其枝蔓晶方向的影響我們可以藉由A356鋁合金來探討,在A356鋁合金降低拉伸速率可發現枝蔓晶的方向會逐漸平行熱流,但再添加1wt % Mn時則較沒有規則,另外降低速率時我們也可以發現Si的析出相會由板狀轉換成球狀。而添加1wt % Mn時我們主要可以發現白色針狀的Al5FeSi會轉換成白色碎布狀的Al15(Fe,Mn)3Si2。
另外本實驗也對Al-Si共晶合金及Al-Si-Cu共晶合金進行方向性凝固研究,由於目前實驗所設溫度梯度,我們得到的顯微組織結構並不如預期,其推測最主要的原因為溫度梯度太小,造成其冷卻速率過低產生類似時效行為。
Abstract
Directional solidification technique applied to investigate the dendrite alloy segregation and the phase identification in multiple phases co-precipitation. Because the large size dendrite could form in directional solidification which would provide large scale to investigate the dendrite segregation from dendrite center region to edge region. For the eutectic type alloys, several phases formed together and have the difficulty to identify these fine phases. These alloys could solidify under slower directional solidification condition and form larger phase.

A356 aluminum alloy and add 1 wt.%Mn alloy were applied in this study. The influence of thermal gradient, extruding rate and chemical composition to microstructure were investigated. In A356 aluminum alloy and it add 1wt.% Mn we found the Al dendrite is larger than nature cooling then it is good to carry out quantitative analysis, we also can find the Al dendrite grow paralleled with heat in A356 but not in A356 with 1wt.% Mn, and the precipitate will convert to fibrous from plates when the extruding rate reduced. When A356 alloy addition 1 wt.% Mn the Al5FeSi IMC would convert to Al15(Fe,Mn)3Si2.

We also take Al-Si and Al-Si-Cu eutectic system, due to the current temperature parameter, the microstructure is not as expected. Because the
lower thermal gradient caused the lower cooling rate, and generated ageing behavior. Thus the change of extruding rate is not affecting the microstructure.
目次 Table of Contents
論文審查書 i
致謝 ii
中文摘要 iii
英文摘要 v
目錄 vi
表目錄 viii
圖目錄 ix
一、 前言 1
1-1 研究背景 1
1-2 研究動機 2
二、 文獻回顧 3
2-1 Al-Si系鋁合金簡介 3
2-1-1 化學成分調節對亞共晶系之Al-Si系鋁合金的影響 3
2-1-2 冷卻速率對顯微組織的影響 5
2-1-3 Al-Si共晶組織的成核成長 6
2-2 凝固理論 6
2-2-1 金屬凝固 7
2-2-2 方向性凝固 7
2-3 共晶合金的方向性凝固 8
三、研究方法與步驟 10
3-1研究方法 10
3-2實驗步驟 10
3-2-1合金試片準備 10
3-2-2方向性凝固實驗設計 12
3-2-3 試片分析 12
四、實驗結果與討論 13
4-1 STA分析 13
4-2-1 A356鋁合金之方向性凝固組織 14
4-2-2 A356鋁合金添加1wt. % Mn之方向性凝固組織 15
4-2-3 Al-Si共晶合金之方向性凝固組織 15
4-2-4 Al-Si-Cu共晶合金之方向性凝固組織 17
4-3 定量分析 18
4-4 A356鋁合金凝固偏析分析 18
五、結論 20
六、參考文獻 22

表目錄
表2-1 A356鋁合金成分表 (開南金屬工業股份有限公司) 28
表2-2 Al-Si-Cu之Invariant Equilibria 28
表4-1 各組試片之STA分析與實際量測溫度 29
表4-2 圖片4-33之定量分析結果 29
表4-3 圖片4-34之定量分析結果 30
表4-4 圖片4-35之定量分析結果 30
表4-5 圖片4-36之定量分析結果 31
表4-6 圖片4-37之定量分析結果 31
表4-7 圖4-38的定量分析結果 32
表4-8 圖4-39的定量分析結果 33
表4-9 圖4-40的定量分析結果 34

圖目錄
圖2-1 Al-Si二元相圖[3] 35
圖2-2 Al-Si-Cu三元相圖[3] 35
圖2-3 亞共晶系之Al-Si合金的共晶Si型態比較(a) 未調節 (b) 添加Sr(300 ppm Sr) (c) 添加Sb (2400ppm Sb)[6] 36
圖2-4 Al-Fe二元相圖[3] 36
圖2-5 Al-5%Si-1%Cu-0.5%Mg-(Fe)合金之各種常見的含鐵介金屬相 (a) β-Al5FeSi platelets (b) script-like α-Al8Fe2Si (c) π相(Al8FeMg3Si3) 從β長出 (d) script-like π相[8] 37
圖2-6 Al-7%Si-0.2
參考文獻 References
1. 古錦松, 氬氣鎢極電銲能力本位訓練教材認識鋁及鋁合金材料, 中華民國職業訓練研究發展中心,2001.
2. W. F. Smith, “Structure and properties of engineering alloy”, McGraw-Hill, U.S.A, 1993.
3. H. Okamoto, “ASM hand book Vol.3 alloy phase diagrams, edited by H. Baker”, ASM International, Ohio, 1992.
4. 黃偉哲, 工程材料原理, 科技圖書, 台灣, 1991.
5. G. Hieiberg, Ch-A. Gandin, H. Goerner, L. Arnberg, “Experimental and modeling studies of the thermal conditions and magnesium, iron, and copper content on the morphology of aluminum silicon eutectic in hypoeutectic aluminum silicon alloy” , Metallnrgical and Materials Transactions A, 2004, Vol. 35A, No. 9, pp. 2981-2990.
6. A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, L. Lu, “
Eutectic modification and microstructure development in Al–Si alloys”, Materials Science and Engineering A, Vol. 413, pp. 243-248.
7. J. E. Gruzleski, “The art and Science of modification: 25 years of progress”, AFS Transactions, 1992, Vol.100, pp.673-683.
8. J. A. Taylor, “The Effect of Iron in Al-Si Casting Alloys”, Proceedings of the International 35th Australian Foundry Institute National Conference, 2004, pp148-157.
9. S. H. Lee, B. H. Kim, S. M. Lee, “Prediction of Solidification Paths in Al-Si-Fe Ternary System and Experimental Verification: Part 1. Fe-Containing Hypoeutectic Al-Si Alloys”, Materials Transactions, 2011, Vol. 52, No. 5, pp. 1053-1062.
10. L. Backerud, G. Chai, J. Tamminen, “Solidification Characte-ristics of Aluminum Alloys”, American Foundrymen's Society, 1990, Vol. 2, pp. 71-84.
11. C. M. Dinnis, J. A. Taylor, A. K. Dahle, “Interactions betwe-
en iron, manganese, and the Al-Si eutectic in hypoeutectic Al-Si alloys”, Metallnrgical and Materials Transactions, 2006, Vol. 37A, No. 11, pp. 3283-3291.
12. H. Iwahori, H. Takamiya, Y. Yamamoto, M. Nakamura, “Inf-
luence of iron and manganese on feedability of AC2B aluminum alloy”, Imono, 1988, Vol. 60, pp. 590-595.
13. N. Roy, A. M. Samuel, F. H. Samuel, “Porosity formation in Al-9 wt%Si-3 wt% Cu alloy systems: Metallographic Observations”, Metallnrgical and Materials Transactions , 1996, Vol. 27A, pp. 415-429.
14. M. O. Otte, “Porosity formation in AlSi¬9Cu3 alloy casting: the influence of iron, strontium, sodium, antimony and bismuth”, University of Queensland, 2001.
15. J. A. Taylor, G. B. Schaffer, D. H. StJohn, “The role of iron in the formation of porosity in Al-Si-Cu based casting alloys: part 3. A microstructural model”, Metallnrgical and Materials Transactions A, 1999, Vol. 30A, pp. 1657-1662.
16. K. Nogia, S. D. McDonald, K. Tsujimoto, K. Yasuda, A. K. Dahle, “Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys”, J Electron Microsc, 2004, Vol. 53, pp.361-369.
17. 謝克昌, 吳茂榮, “鋁合金的熱分析與凝固組織研究”, 1996
18. K. Nogita, A. K. Dahle, “Eutectic solidification in hypoeutectic Al-Si alloys: electron backscatter diffraction analysis”, Materials Characterization, 2001, Vol. 46, pp.305-310.
19. S. Nafisi, R. Ghomashchi, H. Vail, “Eutectic nucleation in hypoeutectic Al-Si alloys”, Materials Characterization, 2008, Vol. 59, pp. 1466-1473.
20. S. Shankar, Y. W. Riddle, M. M. Makhlouf, “Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys”, Acta Mater, 2004, Vol. 52, pp. 4447–4460.
21. W. Oldfield, “A quantitative approach to casting solidificat-
ion freezing of cast iron”, ASM Trans, 1966, Vol. 59, pp. 945-960.
22. D. M Stefanescu, S. Trufinescu, “Crystallization kinetics of gray cast iron”, Z.Metallkd, 1974, Vol. 65, pp.610-666.
23. K. C. Su, I. Ohnaka, I. Yamauchi, T. Fukusako, “Computer simulation of solidification of nodular cast iron”, Proceedings of the third international symposium on the metallurgy of cast iron. Estocolmo, agosto, 1984, Vol. 29-31, pp. 181-189.
24. W. Kurz, D. J. Fisher, “Fundamentals of solidification”, Trans. Tech. Publications Ltd, 1986.
25. M. A. Mota, A. A. Coelho, J. M. Z. Bejarano, S. Gama, R. Caram, “Directional growth and characterization of Fe-Al-Nb eutectic alloys”, Journal of Crystal Growth, 1999, Vol. 198-199, pp.850-855.
26. S. Milenkovic, A. A. Coelho, R. Caram, “Directional solidification processing of eutectic alloys in the Ni-Al-V system”, Journal of Crystal Growth, 2000, Vol. 211, pp.485-490.
27. M. A. Mota, A. A. Coelho, J. M. Z. Bejarano, S. Gama, R. Caram, “Fe–Al–Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb–(Fe, Al, Nb)ss eutectic system”, Journal of Alloys and Compounds, 2005, Vol. 399, pp.196-201.

28. C. T. Rios, S. Milenkovic, S. Gama, R. Caram, “Influence of the growth rate on the microstructure of a Nb–Al–Ni ternary eutectic”, Journal of Crystal Growth, 2002, Vol. 237-239, pp.90-94.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code