Responsive image
博碩士論文 etd-0705115-143616 詳細資訊
Title page for etd-0705115-143616
論文名稱
Title
以附有延拓法之徑向基底函數配置法求解Gross-Pitaevskii方程
A continuation algorithm embedded in the radial basis function collocation method for Gross-Pitaevskii equation.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
34
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-24
繳交日期
Date of Submission
2015-08-05
關鍵字
Keywords
葛羅斯-皮塔夫斯基方程、配置法、徑向基底函數、連續法、逆多元二次徑向基底函數
radial basis function, continuation method, collocation method, Gross-Pitaevskii equation, inverse multiquadric function
統計
Statistics
本論文已被瀏覽 5778 次,被下載 0
The thesis/dissertation has been browsed 5778 times, has been downloaded 0 times.
中文摘要
我們以附有延拓法之徑向基底函數配置法求解葛羅斯-皮塔夫斯基方程。方程式藉由以逆多元二次徑向基底函數在均勻網格點上之線性組合內插方法離散化。我們利用方程式線性部分之精確解作為延拓法的初始值,而在非線性部分中的散射長度常數及角動量常數分別當作連續法之獨立參數。在數值實驗中可觀察到,此方法在修正過程中的收斂區域很廣,即使當通過奇異點時通常也能收斂到數值解。
Abstract
We compute the numerical solution of Gross-Pitaevskii equation by a continuation algorithm embedded in the radial basis function collocation method. The equation is interpolated by a linear combination of the inverse multiquadric functions under uniform grid points. The exact solution of the linear portion of the equation is taken as the initial value, and the other nonlinear parts, scattering term and rotating term, are independently extended by continuation algorithm. The numerical experiments show that under such formulation, the convergent regions are quite large in the correction process so that it usually converges to a numerical solution even when passing a singular point.
目次 Table of Contents
論文審定書 ------------------------------------------------------------------------- i
摘要 ---------------------------------------------------------------------------------- ii
Abstract ----------------------------------------------------------------------------- iii
1. Introduction --------------------------------------------------------------------- 1
2. Preliminary ---------------------------------------------------------------------- 3
2.1 Collocation method ------------------------------------------------------- 3
2.2 Radial basis function ----------------------------------------------------- 4
3. Discretization ------------------------------------------------------------------- 7
3.1 Collocation points --------------------------------------------------------- 7
3.2 The nonlinear Schrodinger equation ------------------------------ 8
3.3 The mass conservation constraint ------------------------------------ 10
4. Numerical methods ----------------------------------------------------------- 12
4.1 Linear Schrodinger equation ---------------------------------------- 12
4.2 Continuation method with parameter μ ------------------------------ 14
4.3 Continuation method with parameter ω ----------------------------- 15
5. Numerical results -------------------------------------------------------------- 19
6. Conclusions --------------------------------------------------------------------- 24
7. Appendix ------------------------------------------------------------------------- 25
References -------------------------------------------------------------------------- 27
參考文獻 References
[1] J. R. Abo-Shaeer, W. Ketterle, C. Rarnan and J. M. Vogets (2001), Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (5516), 476.

[2] M. H. Anderson, E. A. Cornell, J. R. Ensher, M. R. Matthews and C. E. Wieman (1995), Observation of Bose-Einstein condensation in a dilute atomic vapor,
Science, 269, 198-201.

[3] B. P. Anderson, E. A. Cornell, P. C. Haljan, D. S. Hall, M. R. Matthews and C.
E. Wieman (1999), Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83,
2498.

[4] W. Bao (2004), Ground states and dynamics of multi-component Bose-Einstein
condensates, SIAM Multiscale Model. Simul., 2 (2), 210-236.

[5] W. Bao, Q. Du (2004), Computing the ground state solution of Bose-Einstein
condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (5), 1674-1697.

[6] W. Bao, D. Jaksch, P. A. Markowich (2003), Numerical solution of the GrossPitaevskii equation for Bose-Einstein condensation, Journal of Computational Physics, 187, 318-342.

[7] W. Bao, P. A. Markowich and H. Wang (2005), Ground, symmetric and central
vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci, 3(1), 57-88.

[8] W. Bao, W. Tang (2003), Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional, Journal of Computational Physics, 187,
230-254.

[9] C. C. Bradley, R. G. Hulet and C. A. Sackett (1995), Evidence of Bose-Einstein
condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75,
1687.

[10] S. -L. Chang, C. -S. Chien (2007), Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensate, Comput. Phys. Comm., 177, 707-719.

[11] S. Chen, C.F.N. Cowan, P.M. Grant (1991), Orthogonal least-squares learning
algorithm for radial basis function networks, IEEE Trans. Neural Netw. 2(2),
302–309

[12] B. -Y. Cheng (2014), Extending the stable energy diagram of rotating BoseEinstein condensates, Master thesis.

[13] F. Chevy, J. Dalibard, K. W. Madison and W. Wohlleben (2000), Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84 (5), 806-809.

[14] F. Chevy, J. Dalibard, K. W. Madison, W. Wohlleben (2000), Vortices in a stirred
Bose-Einstein condensate, J. Modern Opt., 47 (14-15), 2715-2724.

[15] E. A. Cornell, J. R. Ensher, D. S. Hall, M. R. Matthews and C. E. Wieman (1998),
Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett., 81, 1539-1542.

[16] E. A. Cornell, J. R. Ensher, D. S. Jin, M. R. Matthews and C. E. Wieman (1996), Bose-Einstein condensation in a dilute gas: measurement of energy and groundstate occupation, Phys. Rev. Lett., 77, 4984.

[17] F. Dalfovo and S. Giorgini (1999), Theory of Bose-Einstein condensation in
trapped gases, Rev. Mod. Phys., 71, 463.

[18] Y. -C. Kuo, W. -W. Lin, S. -F. Shieh, W. Wang (2011), Exploring bistability in
rotating Bose-Einstein condensates by a quotient transformation invariant continuation method, Physica D, 240, 78-88.

[19] Y. -T. Shih, C. -C. Tsai (2013), A two-parameter continuation algorithm using
radial basis function collocation method for rotating Bose-Einstein condensates,
Journal of Computational Physics, 252, 37-51.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.19.251
論文開放下載的時間是 校外不公開

Your IP address is 3.129.19.251
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code