Responsive image
博碩士論文 etd-0705115-151726 詳細資訊
Title page for etd-0705115-151726
論文名稱
Title
利用BAA、PPI或TPGA製備含偶氮苯全像儲存材料之合成與特性分析
Synthesis and Characterization of Azobenzene with BAA、PPI、or TPGA for Holographic Storage
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-30
繳交日期
Date of Submission
2015-08-05
關鍵字
Keywords
基材、甲基紅、偶氮苯、光儲存材料、離子鍵
Substrate, Azobenzene, Optical storage, Ionic bonding, Methyl Red
統計
Statistics
本論文已被瀏覽 5678 次,被下載 38
The thesis/dissertation has been browsed 5678 times, has been downloaded 38 times.
中文摘要
本研究以製備具有重複讀寫能力的偶氮苯複合材料,作為光學儲存上的應用。選用甲基紅2-{[4-(二甲氨基)苯基]偶氮基}苯甲酸(2-{[4-(dimethylamino)phenyl]diazenyl}benzoic acid, Methyl Red,簡稱MR)做為光致變色單體,分別與三種較低分子量的基材、以及一種高分子基材,利用離子鍵結形成複合材料。由於偶氮苯的順式-反式有不同的折射率,故可藉由全像技術製作相位光柵,又因為順式-反式結構具有可逆反應的特性,所以具備重複擦寫的功能。
使用不同基材的目的,在於嘗試製備反應速度快與繞射效率高的材料。三種較低分子量的基材分別為2-(3-氨基丙基)胺(Bis(3-aminopropyl)amine, 簡稱BAA)、聚丙烯胺-丙胺枝狀物(Polypropylenimine tetramine dendrimer, 簡稱PPI)、三羥甲丙烷三聚丙二醇醚(氨基封端)({Trimethylolpropane tris[poly(propylene glycol), amine terminated] ether},簡稱TPGA),至於高分子基材則為3-氨基丙基三乙氧基矽烷((3-Aminopropyl)triethoxysilane, APTES簡稱AP)。這四種基材皆是以氨基與甲基紅形成離子鍵,一方面可以減少相分離的情形,另一方面有較強的分子作用力,相對於以氫鍵構成的複合材料而言,具備較高的熱穩定性,有利於長時間保存。
材料合成與鑑定分析方面,透過核磁共振儀(NMR)、傅立葉轉換紅外線光譜(FTIR)確認鍵結的形成,再利用熱重分析儀(TGA)分析複合材料之熱穩定性質。在光學儲存元件的測試方面,量測各光學儲存元件的繞射效率、光柵形成速度、厚度起伏、與折射率變化。
由實驗結果得知,在材料鑑定部份,這四種基材皆與甲基紅形成離子鍵結,且熱穩定性隨基材分子量增加而提升。在光學元件的測試部份,MR/BBA、MR/PPI、MR/TPGA、MR/AP的最高繞射效率分別為17%、16%、18% 與19%。光柵形成速度隨著基材分子量的減少而增快,同時產生多階繞射的速度也隨著增快。另外,基材分子量越小,伴隨光柵產生的表面起伏就越大,而樹枝狀基材(dendrimer)的分枝越多,偶氮苯受光轉動排列時的立體障礙就越大,導致表面起伏變小。
Abstract
In this study, we prepared several azobenzene composites for optical storage. The light-induced interconversion allows azobenzene composites to be used as rewritable and erasable optical storage materials. Four different materials were selected as the incorporating materials, which were used to combine with the azobenzene material (2-{[4-(dimethylamino)phenyl]diazenyl} benzoic acid, Methyl Red, MR). They were ((3-Aminopropyl)triethoxysilane, APTES, AP), (Bis(3-aminopropyl)amine, BAA), (Polypropylenimine tetramine dendrimer, PPI) and ({Trimethylolpropane tris[poly(propylene glycol), amine terminated] ether}, TPGA). These azobenzene composites were formed by ionic bonding, which reduces the oppertunity of the phase separation and enhances the thermal stability for long term preservation.
The diffraction efficiency of the composites MR/AP, MR/BAA, MR/PPI, MR/TPGA, were 19%, 17%, 16% and 18%. Atomic force microscopy revealed that surface variation of these composites was 768,758, 1467 and 729 nm, respectively, while N&K results show that the sample thickness before holographic recording was 1422nm、1047nm、2148nm、762nm, respectively.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
第二章 原理與文獻回顧 6
2.1 全像術 6
2.1.1 薄光柵與厚光柵 7
2.1.2繞射效率計算方式 9
2.2 偶氮苯化合物的光致變色反應 9
2.2.1 光致變色反應 9
2.2.2 偶氮苯化合物之順反異構型態 11
2.3 以偶氮苯材料作為全像術儲存材料 13
2.3.1表面起伏光柵(Surface relief grating)與折射率變化 13
2.3.1 各式偶氮苯複合材料作為全像術儲存之優劣與特性分析 14
第三章 研究方法 16
3.1 實驗藥品及材料 16
3.2 實驗流程 17
3.2.1 MR/AP製程 17
3.2.2 MR/BAA製程 18
3.2.3 MR/PPI製程 19
3.2.4 MR/TPGA製程 20
3.3 材料的實驗儀器及分析方法 21
3.3.1 傅立葉轉換紅外光譜儀 (Fourier transform infrared spectroscopy, FTIR) 21
3.3.2 核磁共振光譜儀(Nuclear Magnetic Resonance Spectroscopy, NMR) 22
3.3.3 旋轉塗佈機(Spin Coater) 22
3.4 全像干涉紀錄與讀取 23
3.4.1 波前紀錄與波前重建 23
3.5 光學性質檢測儀器 25
3.5.1 原子力顯微鏡(Atomic Force Microscope, AFM) 25
3.5.1 光學顯微鏡(Optical Microscope, OM) 26
3.5.2 薄膜特性分析儀(N&K) 26
第四章 結果與討論 27
4.1 . 材料的合成鑑定 27
4.1.1 NMR核磁共振光譜儀檢測(NMR) 27
4.1.2 傅利葉轉換紅外線光譜儀(FTIR) 38
4.1.3 TGA熱重分析儀(TGA) 46
4.2 光學特性 53
4.2.1 材料的繞射效率檢測 53
4.2.1 薄膜特性及∆n分析(N&K) 60
4.2.2 光學顯微鏡(OM)分析 61
4.2.3 掃描式電子顯微鏡(SEM) 63
4.2.4 原子力顯微鏡 65
第五章 結論 72
參考文獻 73
參考文獻 References
[1] J. Ashley, M.-P. Bernal, G.W. Burr, H. Coufal, H. Guenther, J.A. Hoffnagle, C.M. Jefferson, B. Marcus, R.M. Macfarlane, R.M. Shelby, IBM journal of research and development, 44 (2000) 341-368.
[2] F. K. Bruder, R. Hagen, T. Rölle, M.S. Weiser, T. Fäcke, Angewandte Chemie International Edition, 50 (2011) 4552-4573.
[3] K. Curtis, W.L. Wilson, M. Tackitt, A.J. Hill, S. Campbell, Holographic data storage, Springer, 2000, pp. 359-368.
[4] D. Staebler, W. Burke, W. Phillips, J. Amodei, Applied Physics Letters, 26 (1975) 182-184.
[5] J. E. Ford, Y. Fainman, S.H. Lee, Optics letters, 15 (1990) 1088-1090.
[6] F. T. Yu, S. Wu, A.W. Mayers, S. Rajan, Optics communications, 81 (1991) 343-347.
[7] L. M. Goldenberg, O. Kulikovska, J. Stumpe, Langmuir, 21 (2005) 4794-4796.
[8] Y. P. Tseng, master thesis,National Sun Yat-sen University (2014).
[9] A. Natansohn, P. Rochon, Chemical reviews, 102 (2002) 4139-4176.
[10] D. Gabor, Nature, 161 (1948) 777-778.
[11] D.T. Attwood, Soft x-rays and extreme ultraviolet radiation: principles and applications, Cambridge university press, 2000.
[12] W.R. Graver, J.W. Gladden, J.W. Eastes, Applied optics, 19 (1980) 1529-1536.
[13] S. Yoshida, K. Yamamoto, H. Kurata, M. Yamamoto, Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 687, (2013) 12-15.
[14] B. Chang, Optical Engineering, 19 (1980) 195642-195642-.
[15] A. Ashkin, G. Boyd, J. Dziedzic, R. Smith, A. Ballman, J. Levinstein, K. Nassau, Applied Physics Letters, 9 (1966) 72-74.
[16] E. Rudenko, A. Sukhov, JETP, 105 (1994) 1621-1634.
[17] G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, G. Gerber, Physical review letters, 94 (2005) 068305.
[18] J.-A. He, S. Bian, L. Li, J. Kumar, S.K. Tripathy, L.A. Samuelson, The Journal of Physical Chemistry B, 104 (2000) 10513-10521.
[19] C.-T. Kuo, S.-Y. Huang, Applied physics letters, 89 (2006) 111109-111103.
[20] M. Serwadczak, S. Kucharski, Journal of sol-gel science and technology, 37 (2006) 57-62.
[21] J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, X. Wang, Chemistry of materials, 19 (2007) 3877-3881.
[22] O. Kulikovska, L.M. Goldenberg, J. Stumpe, Chemistry of materials, 19 (2007) 3343-3348.
[23] T. He, Y. Cheng, Y. Du, Y. Mo, Optics communications, 275 (2007) 240-244.
[24] A. Priimagi, K. Lindfors, M. Kaivola, P. Rochon, ACS Applied Materials & Interfaces, 1 (2009) 1183-1189.
[25] T. Kawai, Y. Nakashima, M. Irie, Advanced Materials, 17 (2005) 309-314.
[26] T. Phipson, Fresenius' Journal of Analytical Chemistry, 28 (1889) 354-354.
[27] A.M. Asiri, Journal of Photochemistry and Photobiology A: Chemistry, 159 (2003) 1-5.
[28] Y. Hirshberg, E. Bergmann, F. Bergmann, Journal of the American Chemical Society, 72 (1950) 5120-5123.
[29] H. Bouas-Laurent, H. Dürr, Pure and Applied Chemistry, 73 (2001) 639-665.
[30] G.S. Kumar, D. Neckers, Chemical Reviews, 89 (1989) 1915-1925.
[31] H. Yaping, W. Hui, W. Jinhui, Acta Optica Sinica, 23 (2003) 501-504.
[32] L. Zifeng, Z. Yanjie, W. Zhifa, Chinese J. Lasers, 32 (2005) 265-268.
[33] T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. Ramanujam, S. Hvilsted, Physical review letters, 80 (1998) 89.
[34] H. Nakano, T. Takahashi, T. Kadota, Y. Shirota, Advanced Materials, 14 (2002) 1157.
[35] K. G. Yager, C. J. Barrett, Current opinion in solid state and materials science, 5 (2001) 487-494.
[36] P. Yeh, Introduction to photorefractive nonlinear optics, Wiley New York, 1993.
[37] P. C. Mehta, V. Rampal, Lasers and holography, World Scientific, 1993.
[38] H. J. Eichler, P. Günter, D. W. Pohl, Laser-induced dynamic gratings, Springer-Verlag Berlin, 1986. (1971) 363-370.
[39] G. Kaur, S. Jain, A.K. Tiwary, Asian Journal of pharmaceutical Sciences, 5 (2010) 96.
[40] D. S. dos Santos, M. R. Cardoso, F. L. Leite, R. F. Aroca, L. H. C. Mattoso, O. N. Oliveira, and C. R. Mendonc, Langmuir (2006), 22, 6177-6180
[41]C. E. Jordon, B.L. Frey, S. Kornguth, R.M. Corn, Langmuir, 10 (1994) 3642-3648.
[42] M. Serwadczak, S. Kucharski, Journal of sol-gel science and
technology, 37 (2006) 57-62.
[43] C. H Chen, master thesis,National Sun Yat-sen University (2013).
[44]A. S. Kumar, T. Ye, T. Takami, B. C. Yu, A. K. Flatt, J. M. Tour, P. S. Weiss, Nano Letters, 6(2008)1644-1648.
[45] R.L.Sutherland, L.V.Natarajan,V.P.Tondiglia,T.J.Bunning, W.W. Adams, Development of photopolymer/liquid crystal composite materials for dynamic hologram applications, (1994).
[46] M. Kawabata, A. Sato, I. Sumiyoshi,T. Kubota, Photopolymer system and its application to a color hologram, (1994).
[47]A. Natansohn , P. Rochon , J. Gosselin , S. Xie, Macromolecules, (1992), 25, 2268-2273.
[48] H. Nakao, S. Shinoda, S. Yamamoto, Journal of general microbiology, (1991)07, 01.
[49] G. R. Newkome, C. D. Shreiner, Polymer, 49(2008)1-173.
[50] Y. Zhao, T Ikeda, Smart Light-Responsive Materials(2009).
[51] L. M. Goldenberg, O. Kulikovska, J. Stumpe, American Chemical Solciety(2009)8,1739-1746.
[52]S. Piazzolla, B. K. Jenkis, Optucal Society of America(2000).
[53]S. K. Juang, master thesis,National Sun Yat-sen University (2014).
[54] A. Khan, L. M. Campos, A. Mikhailovsky, M. Toprak, N. C. Strandwitz, G. D. Stucky, C. J. Hawker, Chemistry of Materials 20, (2008), 3669-3674.,
[55] G. W. Lu, K. S. Abedin, T. Miyazaki, IEEE PHOTONICS Technology Letters, 19, 22, (2007).
[56] G. Situ, J. Zhang, Optics Letters, 30, 11, (2005).
[57] K. Curtis, A. Pu, D. Psaltis, Optics letters, 19, 13, (1994).
[58] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, (1991).
[59] W. E. Moerner, S. M. Silence, Chemical Reviews, 94, (1994), 127-155.
[60]S. Kumar, C. J. Tsai, R. Nussinov, Protein Engineering, 13, 3, (2000), 179-191.
[61] S. Suganuma, K. Nakajima, M. Kitano, D Yamaguchi, H. Kato, S. Hayashi, M. Hara, American Chemical Society, 130, (2008), 12787-12793.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code