Responsive image
博碩士論文 etd-0705115-154000 詳細資訊
Title page for etd-0705115-154000
論文名稱
Title
探討傳統污水處理廠溫室氣體減量最佳操作策略與逸散模式分析
Mitigation strategies and fugitive modeling analyses of greenhouse gas emission from a conventional wastewater treatment plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-12
關鍵字
Keywords
溫室氣體、廢水處理、模擬實驗、操作因子、逸散模式
sludge concentration, emission investigation, waste water treatment plant, reaction contact time, Greenhouse gas, aeration intensity
統計
Statistics
本論文已被瀏覽 5699 次,被下載 78
The thesis/dissertation has been browsed 5699 times, has been downloaded 78 times.
中文摘要
本研究選定南台灣一座廢水處理廠(典型金屬加工業廢水處理廠,在本研究中以A廠表示)為研究對象,進行冬夏季兩季溫室氣體二氧化碳(CO2)、甲烷(CH4)、和氧化亞氮(N2O)濃度排放之連續監測及採樣調查,並於廢水處理廠曝氣池旁現地進行批次生物反應器模擬實驗,了解不同操作因子(曝氣強度、混合液懸浮固體濃度、及污泥停留時間)對三種溫室氣體逸散之影響,並進一步探討廢水處理場依不同操作原則達成溫室氣體減量目標的可能性。
本研究討論主要分四個部分:第一階段針對實廠現有排放情形調查,了解廢水處理廠處理單元,其中包含調勻池、初沉池、曝氣池、污泥消化池和終沉池,分別調查冬夏兩季排放濃度、排放係數和排放量,調查結果主要探討三種溫室氣體在廢水處理廠的逸散情形,排放濃度結果顯示冬夏季期間三種溫室氣體都以曝氣池為主要排放單元(除了冬季CH4是終沉池為主要排放單元),CO2排放濃度為3284 mg/m3~4363 mg/m3、CH4的排放濃度為98.13 mg/m3~137.52 mg/m3及N2O的排放濃度為9.98 mg/m3~50.84 mg/m3;排放係數調查,A廠冬季CO2排放係數為0.0225 kg CO2/kg COD~0.0719 kg CO2/kg COD,CH4排放係數為0.000855 kg CO2/kg COD~0.00297 kg CO2/kg COD,N2O排放係數為0.000222 kg N2O/kg N ~0.000872 kg N2O/kg N;夏季CO2排放係數為0.0184 CO2/kg COD~0.0748 CO2/kg COD,CH4排放係數為0.00113 kg CO2/kg COD~0.00355 kg CO2/kg COD,N2O排放係數為0.000152 kg N2O/kg N ~0.000301 kg N2O/kg N,本研究所得到之排放係數與日本之調查結果較為接近;每日排放量方面,A廠冬季期間CO2排放量為83 kg/day、CH4為2.2 kg/day、N2O為0.99 kg/day;夏季期間CO2為55 kg/day、CH4為2.7 kg/day、N2O為0.25 kg/day,結果顯示,調勻池所貢獻量為最大,主要可能原因為調勻池為第一個處理單元,活動強度較其他單元大,原水基質濃度較高,相對貢獻量也多。
第二階段研究調查各處理單元之間總碳和總氮之間的變化百分比,並建立經驗公式觀察水質參數對溫室氣體的影響,結果顯示總碳及總氮變化量幾乎可以忽略,普遍小於約10%;回歸經驗公式以多元二次經驗公式預測效果較佳,而其中較重要之參數則以溫度、溶氧、和亞硝酸鹽為主,其R2值由高到低依序為CO2(0.99)、CH4(0.84)、N2O(0.59)。
第三階段為批次生物反應槽模擬實驗,於實廠現地曝氣池旁架上生物反應槽,分別改變其污泥濃度、污泥停留時間和曝氣強度,實驗結束時,分別收集其氣相和液相樣品後送實驗室分析,並收集反應槽內的水樣分析水質參數懸浮固體物(SS)和化學需氧量(COD),觀察水質的起伏變化。從三種不同操作因子來看,(1)在曝氣池污泥濃度影響方面,從冬夏季模擬實驗得知,在合理的廢水處理效率範圍下,曝氣池的污泥濃度在操作上有部分調降空間,在維持處理效能條件下可減少氣相中溫室氣體濃度(如CO2)或甚至降低因操作產生之能源消耗,進而減少處理過程產生之溫室氣體排放量。(2)在污泥停留時間影響方面,降低污泥停留時間雖可降低CO2排放,卻不能有效降低較高GWP值的N2O濃度,且改變污泥停留時間對曝氣單元放流水水質可能產生較顯著之影響,顯示其不適合做為控制溫室氣體濃度之考慮操作因子。(3)在曝氣強度影響方面,降低曝氣強度可節省電力的支出,亦顯示可降低溫室氣體的排放,在不影響對原有廢水處理廠處理效率的情況下,和改變混合液污泥濃度與改變污泥停留時間實驗結果相比,改變曝氣強度是較為適合控制曝氣單元溫室氣體排放之控制因子考量。
第四階段將第三階段模擬實驗所得的結果,估算氣液相間各溫室氣體之逸能(Fugacity)評估質量傳輸潛勢變化、估算溫室氣體自水相逸散至氣相之通量(Flux)、傳輸速率(Mass-Transfer Rate)與模式預測隨時間溫室氣體可能之濃度變化預測曲線,以了解三種溫室氣體在廢水處水過程中逸散之機制與重要影響因子;最後以生命週期評估最佳可行操作技術。(1)在逸能評估質量傳輸潛勢影響方面,只考慮CH4和N2O的逸能變化,結果顯示,冬夏兩季的逸能估算,溫室氣體質量傳輸都是由液相傳輸到氣相,夏季期間的質量傳輸強度都比冬季來的強,推測原因為溫度的影響,溫度越高造成的傳輸就越劇烈。(2)在傳輸速率影響方面,CO2的傳輸速率為0.124±0.041 m/d、CH4的傳輸速率為0.103±0.017 m/d及N2O的傳輸速率為0.096±0.012 m/d。(3)將傳輸速率得到結果,進一步推估模擬試驗生物反應槽內的溫室氣體逸散通量,配合單因子變異數分析判斷溫室氣體逸散通量是否有顯著性差異;逸散通量結果顯示,在污泥濃度變化實驗中CO2之逸散通量變化最為顯著,CH4在曝氣強度變化實驗中之逸散通量變化為次顯著,N2O的逸散通量在三種操作因子調整過程則皆沒有產生明顯或減少的趨勢。(4)若廢水中溫室氣體濃度固定時,當氣相環境流動或稀釋效果不佳時,溫室氣體自廢水處理單元逸散之速率快慢,於該廢水處理元中需多少時間使溫室氣體在氣液相間達到平衡, 模式預測平衡所需時間之結果顯示,三種溫室氣體趨近於最終濃度所需時間約為120小時,CO2在高污泥濃度和曝氣強度時,可能讓處理單元有較低的CO2氣相平衡濃度,CH4在高污泥濃度和中曝氣強度時,可能讓處理單元有較低的CH4氣相平衡濃度,N2O在中污泥濃度和曝氣強度條件下,可能讓處理單元有較低的N2O氣相平衡濃度。(5)生命週期評估結果,在曝氣強度為實廠曝氣強度200%和600%時,實廠的溫室氣體排放量都有往下降,但隨著曝氣強度的增加,鼓風機所貢獻的溫室氣體排放量遠遠超過實廠所降低的排放量,從整體的溫室氣體排放量來看,隨著曝氣強度的增加,溫室氣體總排放量也跟著增加,由以上結果,建議實廠往減少曝氣強度的方面實施。
由本研究結果可知三種不同操作因子對金屬加工廢水處理廠曝氣池逸散之三種溫室氣體的影響,並建立逸散模式得知三種溫室氣體的排放情形,但須考慮實廠的水質條件,在相關假設條下推估其減量效益。
Abstract
Greenhouse gas (GHG) emission has become an important issue due to the global warming in these decades. Wastewater treatment plants (WWTPs) are known to be one substantial GHG emission source. Understanding the mechanism behind and developing the associated control strategies are the issues worth investigating and the objective of this study. In this study, a WWTP in southern Taiwan that mainly treats wastewater from metal processing industries (Plant A) was selected for investigation in this study. The emissions of three GHGs including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were continuously monitored during two sampling periods in winter and summer. After identifying the biological treatment process was the main contribution source, lab-scale bioreactor batch experiments were conducted in-situ to simulate the full-scale treatment with respect to the effects of different operational parameters including different aeration intensity, mixed liquid suspended solid (MLSS) concentrations, and reaction contact time on three GHG emissions. The results were studied with different analytical tools and theories so the science and mechanism behind the findings can be understood and used to develop possible strategies to control the future GHG emissions from WWTPs.
The study contains four sub-topics: First, the GHG emissions from the WWTP of interest were continuously investigated by analyzing the air-phase GHG concentrations every six hours in a one-week monitoring period in winter and summer. The treatment units analyzed includes the mixing tank, primary clarifier, aeration tank, sludge digestion tank, and final settling tank. In the results, the main emission unit of three GHGs in both winter and summer was the aeration tank, except in winter, the emission of CH4 in the final settling tank was relatively higher. The average ir-phase concentrations of CO2, CH4 and N2O in winter and summer were 3284 mg/m3 and 4363 mg/m3, 98.13 mg/m3 and 137.52 mg/m3 and 9.98 mg/m3 and 50.84 mg/m3, respectively. In winter, the emission factors of CO2, CH4 and N2O were 0.0225 kg CO2/kg COD~0.0719 kg CO2/kg COD, 0.000855 kg CO2/kg COD~0.00297 kg CO2/kg COD and 0.000222 kg N2O/kg N ~0.000872 kg N2O/kg N. In summer, the emission factors of CO2, CH4 and N2O were 0.0184 CO2/kg COD~0.0748 CO2/kg COD, 0.00113 kg CO2/kg COD~0.00355 kg CO2/kg COD and 0.000152 kg N2O/kg N ~0.000301 kg N2O/kg N, respectively. The numbers of the emission factors estimated in this study was close to the numbers estimated by a study in Japan. The mass emitted per day of CO2, CH4 and N2O were 83 kg/day,2.2 kg/day and 0.99 kg/day, respectively. In summer, the mass emitted per day of CO2, CH4 and N2O were 55 kg/day, 2.7 kg/day and N2O 0.25 kg/day, respectively. From the viewpoint of the total mass emitted per day, the mixing tank was more dominant as compared to the other units. The possible explanation was that the mixing tank was the first unit in the WWTP, which faces the source water with significantly higher concentrations enhancing the GHG emissions as compared to those in the subsequent treatment processes.
Next, the carbon and nitrogen mass balance were studied to understand the contributions of GHG emissions on the carbon and nitrogen loss from each treatment unit. The regression analyses were also conducted to investigate the possibility of predicting the GHG emissions by knowing the water quality information. The results showed that the contributions of GHG emissions on the the total carbon or nitrogen losses from different treatment processes were mostly below 10%. In the results of regression analyses, two degree polynomial equations that contain multiple variables were capable of predicting the GHG concentrations in the air phase, with the water quality parameters including temperature, dissolved oxygen and nitrite being considered. The R2 values of the CO2, CH4 and N2O concentration prediction results were 0.99, 0.84 and 0.59, respectively.
Third, the lab-scale experiments simulating the aerobic activated sludge were conducted, as mentioned previously. At the ends of the experiments, the gaseous and aqueous samples were collected to analyze the GHG concentrations in the air and water phases. Selected water quality parameters including the suspended solids (SS) and chemical oxygen demand (COD) were also monitored to understandin the effect of changing certain operational strategies on the treated water quality. Three findings were concluded from the experimental results in this stage: (1) It is possible to slightly reduce the sludge concentration without significantly affecting the treated water quality, minimizing the energy consumption and associated emissions of GHGs, notably CO2; (2) Lower reaction contact times reduced the CO2 emissions without substantially affect the emissions of N2O with a higher global warming potential (GWP). However, the treated water quality was more sensitive to the variation of this operational parameter, indicating that changing the reaction contact may not be an appropriate strategy for the GHG control; (3) Although decreasing the aeration intensity increased the GHG emissions, a lower aeration intensity represents a lower operational cost. Given that the treated water quality was less significantly affected by different aeration intensities in the experiments, increasing the aeration intensity to a limited degree was possibly suitable for controlling the GHG emissions from the aerobic biological process.
Forth, the results of the batch simulation experiments were used to estimate the fugacity, emissions flux, mass transfer rate, and to models the concentration variations of three GHGs in the air phase over the experimental time assuming a close system and a steady wastewater concentration in the water phase. The results are summarized as follows: (1) By estimating the fugacity, the GHGs all transferred from the water to air phase in both winter and summer. Mass transfer potentials were stronger in summer than in winter, attributed to the effect of temperature; (2) The estimated mass transfer rate of CO2, CH4 and N2O were 0.124±0.041 m/d, 0.103±0.017 m/d and 0.096±0.012 m/d, respectively. (3) The estimated the flux of three GHGs decreased in the order: CO2<CH4 <N2O. (4) By assuming a steady wastewater concentration and a close reactor system, of the times needed for three GHGs to achieve equilibrium between the air and water phases were approximately 120 hours. (5) With the life cycle assessment, even though a lower aeration intensity increased the GHG emissions, the reduced GHG emissions associated with the lower aeration intensity and operational burden would compensate the increase of GHG emissions resulted by the treatment process itself, indicating that lowering the aeration intensity is still a possible strategy to reduce the GHG emissions in an aerobic biological treatment process. The findings from both the field monitoring and lab-scale simulation experiments help understand the GHG emissions in a typical WWTP and investigate the effects of different operational strategies on the GHG emissions from its main emission unit, providing important insight into the development of possible strategies to minimize the GHG emissions from WWTPs in the future.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
英文摘要 vii
目錄 x
表目錄 xii
圖目錄 xiii

第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻回顧 7
2.1 溫室氣體 7
2.1.1物理化學特性 7
2.2 溫室效應 8
2.2.1 蒙特婁議定書 11
2.2.2 京都議定書 12
2.3 溫室氣體的生成 12
2.4 廢水處理廠在溫室效應中所扮演的角色 14
2.4.1 操作條件之影響 17
2.4.2 好氧處理之影響 18
2.4.3 厭氧處理之影響 21
2.4.4 水質參數之影響 21
第三章 研究方法 24
3.1 廢水處理廠的選定 24
3.1.1 收集選定廢水處理廠之相關資料 25
3.2 廢水處理廠溫室氣體排放濃度、排放係數、排放量推估 30
3.2.1採樣及分析 30
3.2.2 排放濃度估算 30
3.2.3排放係數推估 30
3.2.4排放量推估 31
3.3 實驗室模擬分析 31
3.3.1 生物反應槽實驗 31
3.3.2 採樣及分析 34
3.4 迴歸分析推估溫室氣體逸散預測公式 36
3.5 碳氮質量平衡推估 38
3.6 逸散模式分析 39
3.6.1 逸能推估 39
3.6.2傳輸速率推估 40
3.6.3逸散通量推估 41
3.6.4假設溫室氣體水相濃度固定時其氣相濃度隨時間變化情形 42
3.7生命週期思考 42
第四章 結果與討論 45
4.1 廢水處理廠溫室氣體排放濃度、排放係數、排放量 45
4.1.1 排放濃度推估結果 45
4.1.2 排放係數推估結果 47
4.1.3 排放量推估結果 50
4.2 實驗室模擬分析結果 52
4.2.1 污泥濃度改變之影響 52
4.2.2 污泥停留時間改變之影響 59
4.2.3 曝氣強度改變之影響 66
4.2.4 三個操作因子比較 72
4.3 總碳與總氮質量變化百分比 73
4.4 迴歸分析建立經驗公式預測溫室氣體逸散 77
4.5逸散模式分析結果 82
4.5.1 逸能結果推估 82
4.5.2 傳輸速率推估 90
4.5.3 逸散通量計算結果 92
4.5.4 模式預測模擬實驗中達到平衡時之溫室氣體氣相濃度及所需時間 95
4.6 生命週期評估結果 108
第五章 結論與建議 109
5.1 結論 109
5.2 建議 113
參考文獻 115
參考文獻 References
Anderson, I. C., and J. S. Levine, 1986, RELATIVE RATES OF NITRIC-OXIDE AND NITROUS-OXIDE PRODUCTION BY NITRIFIERS, DENITRIFIERS, AND NITRATE RESPIRERS: Applied and Environmental Microbiology, v. 51, p. 938-945.
Bird, R. B., W. E. Stewart, and E. N. Lightfoot, 1960, Transport Phenomena, Wiley,New York.
C. Le Quer´ e´, R. J. A., T. Boden , T. Conway , R. A. Houghton , J. I. House , G. Marland, G. R. v. d. W. G. P. Peters , A. Ahlstrom , R. M. Andrew , L. Bopp, J. G. Canadell, P. Ciais, C. E. S. C. Doney, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, K. K. G. R. F. Keeling, S. Levis, P. Levy, M. Lomas, B. Poulter, and J. S. M. R. Raupach, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng, 2013, The global carbon budget 1959–2011.
Cakir, F. Y., and M. K. Stenstrom, 2005, Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology: Water Research, v. 39, p. 4197-4203.
Chen, W. H., W. B. Yang, C. S. Yuan, J. C. Yang, and Q. L. Zhao, 2014, Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: The effects of aeration and sludge addition: Chemosphere, v. 103, p. 92-98.
Daelman, M. R. J., E. M. van Voorthuizen, U. van Dongen, E. I. P. Volcke, and M. C. M. van Loosdrecht, 2012, Methane emission during municipal wastewater treatment: Water Research, v. 46, p. 3657-3670.
Daelman, M. R. J., E. M. van Voorthuizen, U. van Dongen, E. I. P. Volcke, and M. C. M. van Loosdrecht, 2012, Methane emission during municipal wastewater treatment: Water Research, v. 46, p. 3657-3670.
Davidson, J. F., and M. A. Cullen, 1957, Trans. Inst. Chem.
El-Fadel, M., and M. Massoud, 2001, Methane emissions from wastewater management: Environmental Pollution, v. 114, p. 177-185.
El-Fadel, M., and M. Massoud, 2001, Methane emissions from wastewater management: Environmental Pollution, v. 114, p. 177-185.
Flores-Alsina, X., L. Corominas, L. Snip, and P. A. Vanrolleghem, 2011, Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies: Water Research, v. 45, p. 4700-4710.
Flores-Alsina, X., M. Amell, Y. Arnerlinck, L. Corominas, K. V. Gernaey, L. Guo, E. Lindblom, I. Nopens, J. Porro, A. Shaw, L. Snip, P. A. Vanrolleghem, and U. Jeppsson, 2014, Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs: Science of the Total Environment, v. 466, p. 616-624.
Flores-Alsina, X., M. Amell, Y. Arnerlinck, L. Corominas, K. V. Gernaey, L. Guo, E. Lindblom, I. Nopens, J. Porro, A. Shaw, L. Snip, P. A. Vanrolleghem, and U. Jeppsson, 2014, Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs: Science of the Total Environment, v. 466, p. 616-624.
Foley, J. M., R. A. Rozendal, C. K. Hertle, P. A. Lant, and K. Rabaey, 2010b, Life Cycle Assessment of High-Rate Anaerobic Treatment, Microbial Fuel Cells, and Microbial Electrolysis Cells: Environmental Science & Technology, v. 44, p. 3629-3637.
Foley, J., D. de Haas, K. Hartley, and P. Lant, 2010a, Comprehensive life cycle inventories of alternative wastewater treatment systems: Water Research, v. 44, p. 1654-1666.
Hemond, H. F., and E. J. Fechner-Levy, 2000, Chemical Fate and Transport in the Environment, Academic, San Diego.
Himmelblau, D. M. C., 1964, Rev.64,527-550.
Houghton, J., 2001, “Global Warming:The Complete Briefing (Cambridge: Cambridge University Press,”10-13,2001.
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., v. d. Linden, J.R., Xiaosu, and D. (Eds.), 2001, “The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmenta Panel on Climate Change (IPCC),” Cambridge University Press, Cambridge.
IPCC, 2001, IPCC Third Assessment Report.
IPCC, 2007, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. p. 104.
Kampschreur, M. J., H. Temmink, R. Kleerebezem, M. S. M. Jetten, and M. C. M. van Loosdrecht, 2009, Nitrous oxide emission during wastewater treatment: Water Research, v. 43, p. 4093-4103.
Lloyd, D., L. Boddy, and K. J. P. Davies, 1987, PERSISTENCE OF BACTERIAL DENITRIFICATION CAPACITY UNDER AEROBIC CONDITIONS - THE RULE RATHER THAN THE EXCEPTION: Fems Microbiology Ecology, v. 45, p. 185-190.
Lu, W. J., I. M. Chou, R. C. Burruss, and M. Z. Yang, 2006, In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions: Applied Spectroscopy, v. 60, p. 122-129.
Mackay, D., 2001, Multimedia Environmental Models,the Fugacity Approach,2 nd ed., Chelsea,MI., Lewis Publishers.
Poth, M., and D. D. Focht, 1985, N-15 KINETIC-ANALYSIS OF N2O PRODUCTION BY NITROSOMONAS-EUROPAEA - AN EXAMINATION OF NITRIFIER DENITRIFICATION: Applied and Environmental Microbiology, v. 49, p. 1134-1141.
R.T.FERRELL, and D. M. HIMMELBLAU, 1967, Diffusion Coefficients of Nitrogen and Oxygen in Water.
Ren, Y. G., J. H. Wang, H. F. Li, J. Zhang, P. Y. Qi, and Z. Hu, 2013, Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants: Environmental Technology, v. 34, p. 2917-2927.
Ren, Y. G., J. H. Wang, H. F. Li, J. Zhang, P. Y. Qi, and Z. Hu, 2013, Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants: Environmental Technology, v. 34, p. 2917-2927.
Ren, Y. G., J. H. Wang, H. F. Li, J. Zhang, P. Y. Qi, and Z. Hu, 2013, Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants: Environmental Technology, v. 34, p. 2917-2927.
Rittmann, B. E., and P. L. McCarty, 2001, Environmental Biotechnology: Principles and Applications, in McGraw-Hill, ed.
Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden, 2003, Environmental Organic Chemistry, New Jersey, John.
Schwarzenbach, R., P. Gschwend, and D. Imboden, 1993, Environmental Organic Chemistry, New York, Wiley.
Scriven, L. F., Ph.D. dissertation, 1956, University of Delaware.
Tamimi, A., E. B. Rinker, and O. C. Sandall, 1994, DIFFUSION-COEFFICIENTS FOR HYDROGEN-SULFIDE, CARBON-DIOXIDE, AND NITROUS-OXIDE IN WATER OVER THE TEMPERATURE-RANGE 293-368-K: Journal of Chemical and Engineering Data, v. 39, p. 330-332.
Tang, Y. P., and D. M. Himmelblau, 1965, Chem.Eng., Sci., p. 20, 7.
Thomas, W. J., and M. J. A. I. C. Adams, 1965, Eng. J. 61,668-673.
Unver, A. A., and D. M. Himmelblau, 1964, J. CHEM. ENG. DATA 9, p. 428.
USEPA, 2012, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2012.
Versteeg, G. F., and van Swaaij, 1988, W.P.M.J. Chem. Eng. Data, p. 33,29-34.
Vivian, J. E., and C. J. King, 1964, A.I.Ch.E. J., p. 10,220.
Wilke, C. R., and P. Chang, 1955, A.I.Ch.E.J., p. 1:264-270.
Woods, D. R., Ph.D. dissertation, 1961 University of Wisconsin.
Yang, W. B., W. H. Chen, C. S. Yuan, J. C. Yang, and Q. L. Zhao, 2012, Comparative assessments of VOC emission rates and associated health risks from wastewater treatment processes: Journal of Environmental Monitoring, v. 14, p. 2464-2474.
Zhan, L. Y., L. Q. Chen, J. X. Zhang, and Q. Lin, 2013, A system for the automated static headspace analysis of dissolved N2O in seawater: International Journal of Environmental Analytical Chemistry, v. 93, p. 828-842.
中華民國行政院環境保護署,2015,http://teds.epa.gov.tw/new_main1-2.htm
氣候變化商界論壇,2014, http://www.climatechangebusinessforum.com/zhcht/understanding
經濟部標準檢驗局,2015, http://www.bsmi.gov.tw/wSite/xslgip/chinese/index.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code