Responsive image
博碩士論文 etd-0705115-232159 詳細資訊
Title page for etd-0705115-232159
論文名稱
Title
具功率控制及負載補償的SEPIC轉換器設計
SEPIC Converter Design with Power Regulation and Load Compensation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-24
繳交日期
Date of Submission
2015-08-06
關鍵字
Keywords
功率因數修正、負載補償、功率調節、超音波換能器、換流器、SEPIC轉換器
load compensation, power factor correction, power regulation, ultrasonic transducer, inverter, SEPIC Converter
統計
Statistics
本論文已被瀏覽 5721 次,被下載 734
The thesis/dissertation has been browsed 5721 times, has been downloaded 734 times.
中文摘要
本論文將設計的SEPIC轉換器結合換流器應用於超音波噴塗系統,其中SEPIC轉換器提供一個可調整的直流鏈電壓給全橋式換流器。藉由調整輸出電壓,即可調節換流器的輸出功率。考量負載需要穩定的輸出功率以及對抗負載變動的能力。本文在SEPIC轉換器控制架構中加入功率的回饋控制以及前饋的負載補償。這樣一來即使發生負載變動,本文的控制架構也能提供穩定的輸出功率。實驗的結果也應證了SEPIC轉換器不僅有高功率因數,並且在負載變動下依然能有效的調節功率。
Abstract
A SEPIC converter is designed in combination with an inverter to form a driving circuit of an ultrasonic transducer for the spray coating application. The SEPIC converter provides an adjustable DC output to an H-bridge inverter. By adjusting the DC output level, the output power of the inverter is thereby regulated. Considering the requirement of steady driving power and the possible changes in the transducer impedance, additional driving power feedback control and feedforward load compensation are included in the control scheme of the SEPIC converter, so that the resulting ultrasonic driver can maintain a constant driving power even under load variations. The experimental results confirm that the designed SEPIC converter not only has a high power factor, but also help regulate the driving power under a sudden change in load impedance.
目次 Table of Contents
誌 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 vii
表目錄 ix
第 一 章 緒論 1
1.1 研究動機 1
1.2 超音波噴塗系統簡介 2
1.3 文獻回顧 4
1.4 論文貢獻 5
第 二 章 功率調節應用於超音波噴塗 6
2.1 電壓回饋控制 6
2.2 功率回饋控制 11
2.2.1功率估測器設計 11
2.2.2功率控制器設計 13
2.3 負載變動前饋補償器 14
2.4 控制力飽和回饋補償 19
第 三 章 硬體電路設計與系統整合 21
3.1 電源電路設計 21
3.2 驅動電路設計 22
3.3 輸出濾波器設計 24
3.4 回授電路設計 26
3.5 電路佈局與雜訊抑制 29
第 四 章 實現與量測 30
4.1 程式架構 30
4.2 性能量測 32
第 五 章 結論 39
參考文獻 40
附錄A SEPIC電源轉換器 43
附錄B 全橋式功率放大器 46
附錄C 功率因數修正 48
C.1 功率因數修正介紹 48
C.2 現行法規規範 49
參考文獻 References
[1] J. Riemer, Ultrasonic spray coating of nanoparticles, Ph.D. dissertation, Sono-Tek Corporation, 2011.
[2] C. Kauczor, and N. Frohleke, “Inverter topologies for ultrasonic piezoelectric transducers with high mechanical Q-factor,” Proc. 35th IEEE Power Electronics Specialists Conference, vol. 4, pp. 2736-2741, 2004.
[3] Y. Wang, M.J. Draper, S.M. Denley, F.V.P. Robinson, and P.R. Shepherd, “Control scheme evaluation for class-D amplifiers in a power-ultrasonic system,” Proc. 6th IET International Conference on Power Electronics, Machines and Drives, 2012.
[4] D.W. Hart, Introduction to Power Electronics, Prentice Hall, 1996.
[5] J. Yang, An Introduction to the Theory of Piezoelectricity, Springer, 2005.
[6] N. Li, X.S. Lin, P. Lefranc, E. Godoy, and A. Jaafar, “FPGA based sliding mode control for high frequency SEPIC,” IEEE International Symposium on Industrial Electronics, pp. 1575-1580, 2011.
[7] L. Xu, D. Zhi, and L.Y. Liao, “Direct power control of grid connected voltage source converters,” IEEE Power Engineering Society General Meeting, pp. 1-6, 2007.
[8] J. Hu, L. Shang, Y. He, and Z.Z. Zhu, “Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 210-222, 2011.
[9] Z. Zhou, C. Wang, Y. Liu, P.M. Holland, and P. Igic, “Load current observer based feed-forward DC bus voltage control for active rectifiers,” ELSVEIER Journal of Electric Power Systems Research, vol. 84, pp. 165-173, 2012.
[10] S. Kanemaru, T. Hamada, T. Nabeshima, T. Sato, and T. Nakano, “Analysis and optimum design of a buck-type DC-to-DC converter employing load current feedforward,” Proc. 29th IEEE Power Electronics Specialists Conference, vol. 1, pp. 309-314, 1998.
[11] A. Draou, Y. Sato, and T. Kataoka, “A new state feedback based transient control of PWM AC to DC voltage type converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 716-724, 1995.
[12] Z. Hu, B. Zhang, O. Du, L. Zhong, and W. Deng, “Fast transient three-level converters with sliding-mode control,” Proc. 20th IEEE Applied Power Electronics Conference and Exposition, vol. 3, pp.1436-1440, 2005.
[13] J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” Proc. 20th IEEE International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp.1688-1693, 1994.
[14] H. Wei, and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” Proc. 20th Power Electronics Specialists Conference, vol. 3, pp. 348-353, 1998.
[15] S. Ang and A. Oliva, Power-Switching Converters, CRC Press, 2nd Ed., 2005.
[16] Z. M. Jovanovic, “Design Trade-offs in Continuous Current-mode Controlled Boost Power-Factor Correction Circuits,” Proc. 7th International High Frequency Power Conversion Conference, pp. 209-220, 1992.
[17] H. Y. Kanaan and K. A. Haddad, “A comparative analysis of nonlinear current control schemes applied to a SEPIC power factor corrector,” Proc. 31st IEEE Industrial Electronics Society, pp. 1104-1109, 2005.
[18] R. Martinelli, “Power factor correction control circuit and power supply including same,” U.S. Patent no.6373734, 2002.
[19] D. S. L. Simonetti, J. Sebastian, and J. Uceda, “The Discontinuous Conduction Mode Sepic and Ćuk Power Factor Preregulators: Analysis and Design,” IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 630-637, 1997.
[20] F. Golnaraghi and B.C. Kao, Automatic Control System, Wiley, 9th Ed., 2009.
[21] G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, 4th Ed., 2001.
[22] Design Multiple Output Flyback Power Supplies with TOPSwitch Application Note AN-22, Mar. 1998.
[23] R. Li, N. Frohleke, and J. Bocker, “LLCC-PWM inverter for driving high-power piezoelectric actuators,” Proc. 13th International Power Electronics and Motion Control Conference, pp. 159-164, 2008.
[24] R.D. Middlebrook, and S. Cuk, “A General Unified Approach to Modeling Switching Converters in Discontinuous Conduction,” Proc. IEEE Power Electronics Specialists Conference, pp. 18-34, 1976.
[25] R.W. Ericson, and D. Maksimovic, Fundamentals of Power Electronics, Kluwer, 2001.
[26] M.H. Rashid, Power Electronics: Circuits, Devices, and Applications, Prentice Hall, 3rd Ed., 2003.
[27] 梁適安,交換式電源供給器之理論與實務設計,全華圖書,1994。
[28] 精緻電能應用研究中心,電力電子學綜論第二版,全華圖書,2011。
[29] 吳義利,切換式電源轉換器:原理與實用設計技術(實例設計導向),文笙書局,2012。
[30] 劉禮文,具快速響應之功因修正控制器設計,國立中山大學電機工程學系碩士論文,2014。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code