Responsive image
博碩士論文 etd-0705116-142733 詳細資訊
Title page for etd-0705116-142733
論文名稱
Title
鎳電鑄結合UV雷射加工應用於矽穿孔高頻元件之封裝製程
Nickel electroforming combined UV laser processing applied to through silicon via high-frequency component packaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-05
關鍵字
Keywords
頻率分析、紫外光雷射、電鑄鎳、矽穿孔、錐度、電流密度
nickel electroforming, ultraviolet laser, through silicon via, taper, current density, frequency analysis
統計
Statistics
本論文已被瀏覽 5732 次,被下載 0
The thesis/dissertation has been browsed 5732 times, has been downloaded 0 times.
中文摘要
本研究利用355 nm波長紫外光雷射 (355 nm ultraviolet laser) 結合電鑄鎳製程應用於矽穿孔封裝 (through silicon via, TSV) 加工高頻固態堆疊共振器晶片。首先,雷射實驗透過設定不同功率大小、焦距及終止直徑等參數,探討導孔側壁之錐度大小。以頻率30 kHz在能量90 %下開啟動態變焦於雷射終止直徑0.05 mm參數下,在厚度550 μm的矽晶片鑽出直徑約110 μm,深寬比約為5之孔洞,其導孔之錐度約為1.63°,此結果代表雷射鑽孔具有非常準直之導孔側壁。而在電鑄實驗中,分別以0.5 ASD、1 ASD、2 ASD及4 ASD之不同電流密度下,由電流效率與電流密度計算得沉積厚度與時間之關係後進行電鑄實驗,並且將電鑄結果利用奈米壓痕試驗機 (nanoindenter)、能量散佈光譜儀 (energy dispersive spectrometer, EDS)及X射線繞射分析 (X-ray diffraction, XRD) 等設備進行材料性質分析。在越小的電流密度下,鍍層之楊氏係數 (Young’s modulus)與電阻值越小,其晶粒大小則越大,金屬沉積之品質也較佳,唯因電鑄時所使用之電流較小,金屬沉積之時間需要較長。本論文最後亦結合雷射鑽孔以及電鑄鎳對高頻晶片進行矽穿孔封裝加工,以其能夠利用三維結構封裝的優勢大幅減少封裝體積,並在完成封裝製程後以高頻微波探針量測頻率分析,其結果顯示在2.5 GHz下,其S11值約為-3.5 dB。
Abstract
In this study, Nickel electroforming was integrated with 355 nm wavelength ultraviolet laser process to fabricate the through silicon via packaging. This technology was applied to package the high-frequency solidly mounted resonator (SMR). In the laser drilling experiment, the different parameters of laser power, focus length, termination diameter were set to explore the taper size of via. The silicon sample of 550 μm thickness was drilled under dynamic zoom, laser frequency at 30 kHz, laser power at 90 %, and the termination diameter at 0.05 mm. The drilling diameter of the silicon was about 110 μm where the taper was about 1.63° and the aspect ratio was about 5.
The relationship of deposition thickness and time was obtained to electroform. The deposition thickness was calculated by current efficiency and current density and the current density was 0.5 Amps per square decimeter (ASD), 1 ASD, 2 ASD, and 4 ASD, separately. Nanoindenter, energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) were used to analyze the material characteristic of electroforming samples. When the current density was lower, Young’s modulus and resistance were lower, and the grain size was lager. The deposition quality was also better than the higher current density. In the end of this study, laser drilling and electroforming were integrated to package the high-frequency SMR. Ground-signal-ground probe was used to obtain the frequency analysis. The S11 parameter was -3.5 dB where the frequency was 2.5 GHz.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 2
1.4 本文架構 3
第二章 文獻回顧與理論基礎 4
2.1 IC封裝技術介紹 4
2.1.1 IC封裝產業發展 4
2.1.2 IC封裝技術種類 4
2.1.3 常見IC封裝型態 7
2.1.4 TSV技術發展 10
2.2 雷射加工 11
2.2.1 雷射原理 11
2.2.2 雷射簡介 16
2.2.3 雷射加工機制 18
2.2.4 雷射種類 20
2.3 電鑄 21
2.3.1 電化學簡介 21
2.3.2 電化學理論 24
2.3.3 電鑄液種類 25
2.3.4 影響電鑄因素 26
第三章 研究方法與步驟 28
3.1 研究流程 28
3.2 雷射鑽孔加工製程 29
3.2.1 實驗機台設備 29
3.2.2 加工參數設計 32
3.3 電鑄鎳製程 36
3.3.1 電鑄設備 36
3.3.2 電鑄參數實驗 37
3.4 試片檢測 39
3.4.1 表面結構、機械性質檢測 39
3.4.2 材料特性檢測 40
3.4.3 電性量測 43
3.5 TSV高頻晶片 44
3.5.1 高頻晶片準備 44
3.5.2 高頻晶片封裝加工 45
第四章 結果與討論 49
4.1 雷射鑽孔實驗結果分析 49
4.1.1 雷射功率對鑽孔之影響 49
4.1.2 雷射焦距對鑽孔之影響 52
4.1.3 雷射加工次數對鑽孔之影響 53
4.1.4 雷射終止直徑對鑽孔之影響 54
4.2 電鑄實驗結果分析 58
4.2.1 電流效率實驗 58
4.2.2 不同電流密度片電阻值 62
4.2.3 電鑄填孔 64
4.3 測量分析 68
4.3.1 機械性質分析 68
4.3.2 材料特性分析 69
4.3.3 電性分析 72
4.4 高頻晶片封裝加工 74
4.4.1 封裝製程 74
4.4.2 高頻晶片頻率響應 75
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 77
參考文獻 79
參考文獻 References
[1] “TJ Green Associates LLC,” http://www.tjgreenllc.com/course/wire-bonding-certification
[2] http://www.mtarr.co.uk/courses/topics/0258_tab/index.html#1
[3] H.W. Hsu, M.L. Chen, H.M. Chen, H.C. Li and S.H. Chen, “On effective flip-chip routing via pseudo single redistribution layer,” 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1597-1602, 2012.
[4] Joohee Kim, Jun So Pak, Jonghyun Cho, Eakhwan Song, Jeonghyeon Cho, Heegon Kim, Taigon Song, Junho Lee, Hyungdong Lee, Kunwoo Park, Seungtaek Yang, Min-Suk Suh, Kwang-Yoo Byun, and Joungho Kim, “High-frequency scalable electrical model and analysis of a through silicon via,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 2, pp. 181-195, 2011.
[5] B. tan, “Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses,” Journal of Micromechanics and Microengineering, vol. 16, no. 1, pp. 1-4, 2006.
[6] C.W. Tang, H.T. Young, K.M. Li, “Innovative through-silicon-via formation approach for wafer-level packaging applications,” Journal of Micromechanics and Microengineering, vol. 22, pp. 4-8, 2012.
[7] L.C. Shen, C.W. Chien, H.C. Cheng, C.T. Lin, “Development of three-dimensional chip stacking technology using a clamped through-silicon via interconnection,” Microelectronics Reliability, vol. 50, no. 4, pp. 489-497, 2010.
[8] M. Motoyoshi, “Through-silicon via,” Proceedings of the IEEE, vol. 97, no. 1, pp. 43-48, 2009.
[9] Guruprasad Katti, Michele Stucchi, Kristin De Meyer, and Wim Dehaene, “Electrical modeling and characterization of through silicon via for three-dimensional ICs,” IEEE Transactions on Electron Devices, vol. 57, no. 1, 2010.
[10] 張育瑋,「銅柱與錐形矽穿孔接合在三維整合製程之研究」,國立交通大學電子工程學系碩士論文,2015年。
[11] C.W. Tang, K.M. Li, H.T. Young, “Improving the sidewall quality of nanosecond laser-drilled deep through-silicon vias by incorporating a wet chemical etching process,” Micro & Nano Letters, vol. 7, no. 7, pp.693-696, 2012.
[12] 楊國輝、黃宏彥,「雷射原理與量測概論」,五南圖書出版有限公司,2001年。
[13] 鄭王曜,「光梳雷射與其應用」,科學發展月刊,第500期,2014年。
[14] 林三寶,「雷射原理與應用」,全華圖書股份有限公司,2009年。
[15] 鄭龍宇,「雷射微孔軸加工的研究與應用」,國立交通大學機械工程學系碩士論文,2003年。
[16] 楊隆昌,「雷射發展的趨勢與應用」,中工高雄會刊,第22卷,2013年。
[17] Ami Kestenbaum, J.F. D’Amico, B.J. Bolmenstock. M.A. DeAngelo, “Laser drilling of microvias in epoxy-glass printed circuit boards,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 13, no. 4, pp. 1055-1062, 1990.
[18] B.S. Yilbas, “Parametric study to improve laser hole drilling process,” Journal of Materials Processing Technology, vol. 70, no. 1-3, pp. 264–273, 1997.
[19] Kenji Takahashi and Masahiro Sekiguchi, “Through Silicon Via and 3-D Wafer/Chip Stacking Technology,” 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers, pp. 89-92, 2006.
[20] Francesco P. Mezzapesa, Antonio Ancona, Teresa Sibillano, Francesco De Lucia, Maurizio Dabbicco, Pietro Mario Lugarà, and Gaetano Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Optics Letters, vol. 36, no. 6, pp. 822-824, 2011.
[21] D. K. Low, L. Li. P. J. Byrd, “The Effect of Process parameters on Spatter Deposition in Laser Percussion Drilling,” Optics and Laser Technology, vol. 32, no. 5, pp. 347-354, 2000.
[22] Dirk Hellrung, Li-Ya Yeh, Frank Depiereux, Arnold Gillner, and Reinhart Poprawe, “High-accuracy micromachining of ceramics by frequency-tripled Nd:YAG lasers,” Proceeding of SPIE- Laser Microfabrication and Micromachining, vol. 3618, pp. 384-356, 1999.
[23] L. Guo, G.L. Wang, H.B. Zhang, D.F. Cui, Y.C. Wu, L. Lu, J.Y. Zhang, J.Y. Huang, and Z.Y. Xu, “High-power picoseconds 355 nm laser by third harmonic generation based on CsB3O5 crystal,” Applied Physics B, vol. 88, no. 2, pp. 197-200, 2007.
[24] 顏澤宇、曾俊豪,「LCD面板雷射切割技術發展現況與趨勢」,機械工業期刊,第270期,47~58頁, 2005年。
[25] 邱振質,「雷射切割技術應用於QFN封裝之最佳化參數研究」,國立中山大學機械與機電工程學系碩士論文,2015年。
[26] 陳克明,「準分子雷射在增層材料微鑽孔之研究」,國立中央大學化學工程與材料工程研究所碩士論文,2008年。
[27] Stephen R. Cain, F. C. Burns and C. E. Otis, “On single‐photon ultraviolet ablation of polymeric materials,” Journal of Applied Physics, vol. 71, no. 9, pp. 4107-4117, 1992.
[28] R. Srinivasan, B. Braren and R. W. Dreyfus, “Ultraviolet laser ablation of polyimide films,” Journal of Applied Physics, vol. 61, no. 1, pp.372-376, 1987.
[29] Francisco Villarreal Saucedo, Bien Chann, Bryce Samson, and Parviz Tayebati, “Direct diode vs. other laser systems used in laser cutting,” Industrial Laser Solutions, 2016.
[30] 劉耕儒,「以類LIGA技術製作立體微透鏡陣列模仁」,國立中興大學機械工程學系碩士論文,2003年。
[31] 洪士婷,「加入鎳半光澤劑後的電鑄製程參數對光碟模仁品質影響之研究」,私立中原大學光機電及資電控產業研發碩士專班碩士論文,2007年。
[32] 鍾震桂,「3D微結構的電鑄技術之研究」,國立成功大學工業技術研究院委託學術機構研究期末報告,2003年。
[33] Olaf Krüger, Gerd Schöne, Tim Wernicke, Wilfred John, Joachim Würfl, and Günther Tränkle, “UV laser drilling of SiC for semiconductor device fabrication,” Journal of Physics: Conference Series 59, pp. 740-744, 2007.
[34] Pradeep Dixit and Jianmin Miao, “Aspect-Ratio-Dependent Copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating,” Journal of the Electrochemical Society, vol. 153, no. 6, pp. 552-559, 2006.
[35] Hideo Yoshida, Masato Sone, Hiroaki Wakabayashi, Hao Yan, Kentaro Abe, Xu Tang Tao, Aya Mizushima, Shoji Ichihara, Seizo Miyata , “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film,” Thin Solid Films, vol. 446, 2004.
[36] L.T. Romankiw, “A path : from electroplating through lithography masks in electronics to LIGA in MEMS,” Electrochimica Acta, pp. 2985-3005, 1997.
[37] Maner, A., S. Harsch, and W. Ehrfeld, “Mass production of microdevices with extreme aspect ratio by electroforming,” Plating and Surface finishing, pp. 60-65, 1998.
[38] Y.M. Yeh, “Fabrication and Characterization Analysis of Ni-Fe Micro Mold by Pulse Electroforming in LIGA-like Technology,” National Chiao Tung University, 2003.
[39] G.A. DiBari, “Nickel plating,” Metal Finishing Guidebook and Directory, pp. 249-251, 1994.
[40] 魏任傑,「LIGA process電鑄程序之電鑄鎳研究」,國立清華大學化學工程學系碩士論文,1998年。
[41] 鄧永裕,「不同厚度電鍍鎳微結構之機械特性研究」,國立交通大學工研院碩士在職專班精密與自動化工程學程碩士論文,2005年。
[42] 曾華梁、吳仲達、秦月文、陳鈞武、吳佩仁,「電鍍工藝手冊」,機械工業出版社,1994年。
[43] 柯世宗,「微細深孔電鑄鎳之研究」,中正理工學院應用化學研究所碩士論文,2000年。
[44] 鄭冠暉,「電鍍參數對直流電鍍鎳錳合金微結構與機械性質之影響」,國立台北科技大學製造科技研究所碩士論文,2014年。
[45] 廖建能,「超音波震盪攪拌即電鍍液添加劑對電鍍銅膜微結構與機械性質特性影響之研究」,國立清華大學材料科學與工程研究所碩士論文,2015年。
[46] L.Q. Jiang, J.U. Zheng, Q.B. He, and H. Li, “Effect of process variable on hardness of electrodepositing copper coating,” Materials Protection, vol. 3, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.170.17
論文開放下載的時間是 校外不公開

Your IP address is 18.189.170.17
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code