Responsive image
博碩士論文 etd-0705116-145219 詳細資訊
Title page for etd-0705116-145219
論文名稱
Title
層狀摻雜氧化鋅之密度泛函理論的電子性質研究
DFT study on the electronic properties of layeredly doped ZnO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
44
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-08
繳交日期
Date of Submission
2016-08-15
關鍵字
Keywords
原子層沉積、第一原理、密度泛函理論、鋁、氧化鋅、摻雜、中間能帶
first-principles calculations, density functional theory (DFT), ZnO, atomic layer deposition (ALD), aluminum, intermediate band (IB), doping
統計
Statistics
本論文已被瀏覽 5674 次,被下載 34
The thesis/dissertation has been browsed 5674 times, has been downloaded 34 times.
中文摘要
本研究主要利用第一原理的方法研究單層(monolayer,ML)到三層(trilayer,TL)的鋁原子摻雜進纖鋅礦氧化鋅半導體塊材中的電子性質。與之前氧化鋅摻雜第一原理相關文獻不同在於,本研究建構的模型,其摻雜的方式並不是傳統的離子佈植摻雜或高溫擴散摻雜,而是將摻雜元素層狀成長於氧化鋅塊材中。這是由於原子層沉積(atomic layer deposition,ALD)方法的出現,使得層狀結構之成長得以實現。


另外,我們也模擬了不同元素單層摻雜進氧化鋅的結構,在鋁、矽、氮和碳原子摻雜發現了中間能帶,文獻也確實有提到元素摻雜可能產生中間能帶為材料帶來額外的次能階躍遷,分別是價帶到中間能帶與中間能帶到傳導帶,這樣的現象對光學應用有很大的幫助,例如:太陽能電池、發光二極體(light-emitting diode,LED)等。
Abstract
Using first-principles calculations, this work explored the electronic properties of multi-layer aluminum-doped wurtzite zinc oxide (ZnO) up to 3 monolayers. Previous studies have shown ion implantation and high temperature diffusion as doping mechanism in ZnO. However, our work aims to utilize layer-doping which could then be realize through atomic layer deposition (ALD).

We simulated different elements-doped ZnO and found that there is an intermediate band (IB) in the band structure of Al-, Si-, N-, C-doped ZnO, which can also be achieved by doping method. Intermediate band brings additional transitions of sub-energy levels such as valence band (VB) to IB and IB to conduction band (CB), respectively. This phenomenon is useful in optical applications such as intermediate band solar cell (IBSC) and light-emitting diode (LED).
目次 Table of Contents
誌謝 ii

中文摘要 iii

英文摘要 iv

圖目錄 vii

表目錄 ix

1 導論 1

1.1 氧化鋅性質與文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 中間能帶太陽能電池 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 原子層沉積 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 理論和計算方法 14

2.1 計算方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 局域密度近似加 U 值 (LSDA+U) 方法 . . . . . . . . . . . . . . . . . . 15

3 結果與討論 16

3.1 晶體結構參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 不同 U 值的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 不同 Al 成長層數的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 不同元素摻雜的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 能態密度圖比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 結論 30

參考文獻 31
參考文獻 References
1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner. Recent progress in
processing and properties of ZnO. Superlattices and Microstructures, 34(1–2):3–32,
July 2003.

2. Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and
W. I. Milne. Recent developments on ZnO films for acoustic wave based bio-sensing
and microfluidic applications: a review. Sensors and Actuators B: Chemical, 143(2):
606–619, January 2010.

3. K. M. Lakin and J. S. Wang. Acoustic bulk wave composite resonators. Applied
Physics Letters, 38(3):125–127, February 1981.

4. Ü Özgür, Ya I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,
S.-J. Cho, and H. Morkoç. A comprehensive review of ZnO materials and devices.
Journal of Applied Physics, 98(4):041301, August 2005.

5. A. Bakin, A. Behrends, A. Waag, H. J. Lugauer, A. Laubsch, and K. Streubel.
ZnO-GaN Hybrid Heterostructures as Potential Cost-Efficient LED Technology.
Proceedings of the IEEE, 98(7):1281–1287, July 2010.

6. Weilai Yu, Jinfeng Zhang, and Tianyou Peng. New insight into the enhanced
photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Applied Catalysis
B: Environmental, 181:220–227, February 2016.

7. John P. Perdew and Mel Levy. Physical Content of the Exact Kohn-Sham Or-
bital Energies: Band Gaps and Derivative Discontinuities. Physical Review Letters,
51(20):1884–1887, November 1983.

8. Heng Zhang, Congxin Xia, Xiaoming Tan, Tianxing Wang, and Shuyi Wei. Effects
of polar and nonpolar on band structures in ultrathin ZnO/GaN type-II superlat-
tices. Solid State Communications, 221:14–17, November 2015.

9. William Shockley and Hans J. Queisser. Detailed Balance Limit of Efficiency of p‐
n Junction Solar Cells. Journal of Applied Physics, 32(3):510–519, March 1961.

10. A. De Vos. Detailed balance limit of the efficiency of tandem solar cells. Journal
of Physics D: Applied Physics, 13(5):839, 1980.

11. Antonio Luque and Antonio Martí. Increasing the Efficiency of Ideal Solar Cells
by Photon Induced Transitions at Intermediate Levels. Physical Review Letters,
78(26):5014–5017, June 1997.

12. Riikka L. Puurunen. A Short History of Atomic Layer Deposition: Tuomo Sun-
tola’s Atomic Layer Epitaxy. Chemical Vapor Deposition, 20(10-11-12):332–344,
December 2014.

13. Ce-Ming Wang, De-Lin Kong, Qiang Chen, and Jian-Ming Xue. Surface engineering
of synthetic nanopores by atomic layer deposition and their applications. Frontiers
of Materials Science, 7(4):335–349, October 2013.

14. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George. Electrical char-
acterization of thin Al2o3 films grown by atomic layer deposition on silicon and
various metal substrates. Thin Solid Films, 413(1–2):186–197, June 2002.

15. G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical Review B, 54(16):11169–11186,
October 1996.

16. John P. Perdew and Yue Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Physical Review B, 45(23):13244–13249, June 1992.

17. P. E. Blöchl. Projector augmented-wave method. Physical Review B, 50(24):17953–
17979, December 1994.

18. Hendrik J. Monkhorst and James D. Pack. Special points for Brillouin-zone inte-
grations. Physical Review B, 13(12):5188–5192, June 1976.

19. M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der
Physik, 389:457–484, 1927.

20. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sut-
ton. Electron-energy-loss spectra and the structural stability of nickel oxide: An
LSDA+U study. Physical Review B, 57(3):1505–1509, January 1998.

21. Burak Himmetoglu, Andrea Floris, Stefano de Gironcoli, and Matteo Cococcioni.
Hubbard-corrected DFT energy functionals: the LDA+U description of correlated
systems. International Journal of Quantum Chemistry, 114(1):14–49, January 2014.
arXiv: 1309.3355.

22. Xiaodong Si, Yongsheng Liu, Wei Lei, Juan Xu, Wenlong Du, Jia Lin, Tao Zhou,
and Li Zheng. First-principles investigation on the optoelectronic performance of
Mg doped and Mg–Al co-doped ZnO. Materials & Design, 93:128–132, March 2016.

23. Yanfeng Wang, Xiaodan Zhang, Xudong Meng, Yu Cao, Fu Yang, Jingyu Nan,
Qinggong Song, Qian Huang, Changchun Wei, Jianjun Zhang, and Ying Zhao.
Simulation, fabrication, and application of transparent conductive Mo-doped ZnO
film in a solar cell. Solar Energy Materials and Solar Cel ls, 145, Part 3:171–179,
February 2016.

24. Adeleh Mokhles Gerami and Mehdi Vaez-Zadeh. A Numerical Study on Magnetic
and Structural Properties of Ni-Doped ZnO Nanoparticles at Extremely Low Tem-
peratures. Journal of Superconductivity and Novel Magnetism, 29(5):1295–1302,
January 2016.

25. Chieh-Cheng Chen and Hsuan-Chung Wu. Electronic Structure and Optical Prop-
erty Analysis of Al/Ga-Codoped ZnO through First-Principles Calculations. Ma-
terials, 9(3):164, March 2016.

26. Weiyang Yu, Zhili Zhu, Chun-Yao Niu, Chong Li, Jun-Hyung Cho, and Yu Jia.
Anomalous doping effect in black phosphorene using first-principles calculations.
Phys. Chem. Chem. Phys., 17(25):16351–16358, 2015.

27. Refinement of the structure of anatase at several temperatures. Zeitschrift für
Kristal lographie, 136(3-4):273–281, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code