Responsive image
博碩士論文 etd-0705116-154355 詳細資訊
Title page for etd-0705116-154355
論文名稱
Title
線性壓電致動器應用於自動充填裝置之設計與製作
Design and fabrication of an automatic filling equipment with a linear piezoelectric actuator.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-10
關鍵字
Keywords
微步進定位平台、電容感測器、脈衝寬度調變、長行程壓電致動器、壓電線性致動器
Capacitance sensor, Micro-stepping positioning stage, Piezoelectric linear actuator, Pulse-width modulation, Long traveling distance piezo plate
統計
Statistics
本論文已被瀏覽 5767 次,被下載 33
The thesis/dissertation has been browsed 5767 times, has been downloaded 33 times.
中文摘要
為了穩定地驅動電子顯微樣品槽(K-kit)以及控制驅動之速度,本論文提出一個創新的軸向驅動微步進定位平台(AAMPS),該平台是一透過毛細現象(Capillarity)填充微流體至樣品槽的自動充填系統。其主要由壓電線性致動器、毛細作用偵測器與電容位置感測器搭配驅動電路所組成。
電容位置感測器可以即時量測出感測器中兩電容極板重疊面積之電容值,隨著致動器上滑塊驅動位置改變,極板之重疊面積和電容值也將隨其產生變化。驅動電路中,微控制器(MCU)透過脈衝寬度調變技術(PWM),改變壓電致動器載波頻率之工作週期(Duty-ratio)。壓電致動器將根據上述之電容值變化調變K-kit速度,並以此調變技術達到微步進驅動之能力。
毛細作用偵測器用於判斷樣品槽是否與目標微流體發生毛細作用,當毛細作用發生時,偵測器之電容值會產生劇烈變化。此時致動器停止驅動,樣品槽開始採集目標微流體。對於壓電致動器而言,每塊壓電塊材會因製造過程、環境與溫度等因素,造成共振頻率上些許的差異。為確保致動器中壓電塊材能有最高的機電轉換效率,本論文使用鎖相迴路(PLL)達成自動追蹤壓電線性致動器的共振頻率。
此外,為了實現AAMPS之長行程致動,本論文開發出一創新長行程壓電線性致動器,此致動器搭配一個44.2 × 8 × 1.5 mm^3的壓電塊材,以順序激發之方式實現長距離的行程移動。且實驗結果顯示,長行程壓電線性致動器最大行程可達到32.5 mm。
Abstract
For driving electron microscope sampling capacity (K-kit) smoothly and modulate the driving speed, this thesis proposed a novel ‘‘axial-actuating micro-stepping positioning stage’’ (AAMPS). It is an automatic feeding system, which utilizes the Capillarity action for the microfluidic sampling process. The AAMPS composed of a piezoelectric linear actuator, a capillarity filling detector and a capacitance position sensor with a driving circuit.
The capacitive position sensor measures the in-time capacitance from the overlapping area between two capacitive plates. The overlapping area and the capacitance would vary according to the difference relative position of plates. For the driving circuit, the microcontroller (MCU) adjusts the duty-ratio of the piezoelectric linear actuator carrier frequency through pulse–width modulation technology (PWM). The velocity of the K-kit was modulated by the piezoelectric linear actuator refer to the capacitance variation and achieve the ability of micro-stepping motion.
The capillarity filling detector was used to distinguish whether the capillarity happens between K-kit and target liquid. The capacitance will increase sharply while the capillarity happen. This time the actuator will stop working and the K-kit will begin filling into the liquid. For the piezoelectric actuator, each piezo plate has individual difference due to manufacturing, surroundings and temperature etc. To ensure every piezo plate is working under best machine-electric efficiency. This thesis used the phase-locked loop (PLL) technology to achieve automatic tracking of the resonant frequency of the piezoelectric linear actuator.
Furthermore, a concept of installing a long-distance driving actuator on AAMPS was proposed. This actuator will be mounted a 44.2 × 8 × 1.5 mm^3 piezo plate and realize the long traveling distance actuating by sequent excitation. The experimental result indicates that the maximum stroke of the actuator is 32.5 mm.
目次 Table of Contents
摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiii
LIST OF SYMBOLS xiv
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 3
1.2.1 Piezoelectric ultrasonic motors 4
1.2.1.1 Piezoelectric linear motors 4
1.2.1.2 Linear piezoelectric actuator 8
1.2.2 Piezo positioning stage 16
CHAPTER 2 PIEZOELECTRIC ACTUATOR DESIGN 20
2.1 Motivations 20
2.1.1 Piezoelectric Effect 21
2.2 Piezoelectric Materials 23
2.3 Governing Equation 26
2.3.1 Strain-charge form interactive relationship equation 28
2.4 PZT-QA 29
2.4.1 Parameters of PZT-QA 29
2.4.2 Actuating principle of PZT-QA 30
2.5 COMSOL SIMULATION 33
2.5.1 Piezo plate: 21×8×1.5 mm3 with sidewall 7.5° inclined 34
2.5.2 Piezo plate: 22×8×1.5 mm3 with sidewall 7.5° inclined 43
2.5.3 Piezo plate: 44.2×8×1.5 mm3 with sidewall 7.5° inclined 49
CHAPTER 3 NOVEL AXIAL-ACTUATING MICROSTEPPING POSITIONING STAGE 56
3.1 Mechanism of AAMPS 57
3.2 Capacitive sensing system 58
3.2.1 Capillarity phenomenon (capillarity attraction) 59
3.2.2 Capacitive principle 59
3.2.3 Design of capacitive sensor 61
3.2.4 Theoretical capacitance from AD7150 64
3.3 Control circuit 66
3.3.1 Duty ratio (duty cycle) 66
3.3.2 Phase-locked loops 67
CHAPTER 4 EXPERIMENT RESULT 69
4.1 Experiment flow chart of automatic sampling process 69
4.2 Displacement and velocity of AAMPS with driving circuit 70
4.2.1 Speed modulation 71
4.2.1.1 Upward actuating 72
4.2.1.2 Downward actuating 75
4.2.1.3 Velocity-duty of the piezoelectric actuator 77
4.2.1.4 Free thrust of the piezoelectric actuator 78
4.3 Automatic sampling process of AAMPS .79
4.3.1 Initial position of K-kit 79
4.3.2 Actuating status of K-kit 80
4.3.3 Sampling status (final position) of K-kit 81
4.3.4 Full speed upward actuating status of K-kit 82
4.3.5 Capacitance of Capacitive position sensor and Capillarity filling detector 83
4.4 44.2×8×1.5 mm3 piezo plate actuating 84
CHAPTER 5 CONCLUSION AND FUTURE WORK 89
5.1 Conclusion 89
5.2 Future work 90
REFERENCE 91
參考文獻 References
[1] "Particle Size Analysis Market by Technology (Laser Diffraction, Dls, Imaging (Dynamic, Static), Coulter Principle, Nta),Industry (Healthcare, Chemicals & Petroleum, Exploitation, Mineral), Forecast by End-Use, " Markets & Markets, 2014.
[2] J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, "Bio-Inspired, Bioengineered and Biomimetic Drug Delivery Carriers," Nature Reviews Drug Discovery, vol. 10, no. 7, pp. 521-535, July 2011.
[3] G. Yan, P. Dalhaimer, S. Cai1, R. Tsai1, M. Tewari1, T. Minko, and D. E. Discher "Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery," Nature Nanotechnology, vol. 2, no. 4, pp. 249-255, March 2007.
[4] B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, "Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells," Nano Letters, vol. 6, no. 4, pp. 662-668, 2006.
[5] L. Twan, S. Aime, W. E. Hennink, G. Storm, and F. Kiessling, "Theranostic Nanomedicine," Accounts of Chemical Research, vol. 44, no. 10, pp. 1029-1038, May 2011.
[6] J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. Desimone, "Print: A Novel Platform toward Shape and Size Specific Nanoparticle Theranostics," Accounts of Chemical Research, vol. 44, no. 10, pp. 990-998, August 2011.
[7] P. Y. Lee, and K. K. Y. Wong, "Nanomedicine: A New Frontier in Cancer Therapeutics," Current Drug Delivery, vol. 8, no. 3, pp. 245-253,May 2011.
[8] L. A. Tai, Y. T. Kang, Y. C. Chen, Y. C. Wang, Y. J. Wang, Y. T. Wu, K. L. Liu, C. Y. Wang, Y. F. Ko, C. Y. Chen, N. C. Huang, J. K. Chen, Y. F. Hsieh, T. R. Yew, and C. S. Yang,"Quantitative Characterization of Nanoparticles in Blood by Transmission Electron Microscopy with a Window-Type Microchip Nanopipet," Analytical Chemistry, vol. 84, no. 15, pp. 6312-6316, July 2012.
[9] K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, P. Chang, L. Hsu, and T. R. Yew, "Novel Microchip for in Situ Tem Imaging of Living Organisms and Bio-Reactions in Aqueous Conditions," Lab on a Chip, vol. 8, no. 11, pp. 1915-1921, September 2008.
[10] R. E. Horita, "Free‐Flooding Unidirectional Resonators for Deep‐Ocean Transducers," The Journal of the Acoustical Society of America, vol. 41, no. 1, pp. 158-166, July 1967.
[11] K. Uchino, "Piezoelectric Ultrasonic Motors: Overview," Smart Materials & Structures, vol. 7, no. 3, pp. 273-285, October 1997.
[12] K. Spanner, 'Survey of the Various Operating Principles of Ultrasonic Piezomotors,' Proc. of the international conference Actuator, 2006.
[13] T. Sashida, "Trial Construction and Operation of an Ultrasonic Vibration Driven Motor," Oyo Butsuri, vol. 51, no. 6, pp. 713-720, 1982.
[14] T. Sashida, and T. Kenjo, "Introduction to Ultrasonic Motors," January 1993.
[15] T. Sashida "Motor Device Utilizing Ultrasonic Oscillation." U.S. Patent 4562374 A, December 1985.
[16] T. Hemsel, and J. Wallaschek. "Survey of the Present State of the Art of Piezoelectric Linear Motors," Ultrasonics, vol. 38, no. 1-8, pp. 37-40, March 2000.
[17] S. Y. Lai, and C. S. Zhao, "A New Standing-Wave-Type Linear Ultrasonic Motor Based on in-Plane Modes," Ultrasonics, vol. 51, no. 4 pp. 397-404, May 2011.
[18] J. P. Li, H. W. Zhao, M. K. Shao, X. Q. Zhou, and Z. Q. Fan, "Design and Experimental Research of an Improved Stick-Slip Type Piezo-Driven Linear Actuator," Advances in Mechanical Engineering, vol. 7, no. 9, 2015.
[19] Y. X. Liu, W. S. Chen, X. H. Yang, and J. K. Liu, "A T-Shape Linear Piezoelectric Motor with Single Foot," Ultrasonics, vol. 56, pp. 551-556, October 2014.
[20] K. Spanner, O. Vyshneevskyy, and W. Wishnewskiy, 'New Linear Ultrasonic Micromotor for Precision Mechatronic Systems,' Proceedings of the 10th International Conference on New Actuators, Bremen, Germany, 2006.
[21] Y. J. Wang, Y. C. Chen, and S. C. Shen, "Design and Analysis of a Standing-Wave Trapezoidal Ultrasonic Linear Motor," Journal of Intelligent Material Systems and Structures, vol. 26, no. 17, pp. 2295-2303, October 2014.
[22] S. H. Chang, C. K. Tseng, and H. C. Chien. "An Ultra-Precision Xy Theta(Z) Piezo-Micropositioner - Part I: Design and Analysis," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 46, no. 4, pp. 897-905, July 1999.
[23] S. H. Chang, C. K. Tseng, and H. C. Chien. "An Ultra-Precision Xy Theta(Z) Piezo-Micropositioner - Part II: Experiment and Performance," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 46, no. 4, pp. 906-912, July 1999.
[24] C. H. Liu, W. Y. Jywe, Y. R. Jeng, T. H. Hsu, and Y. T. Li, "Design and Control of a Long-Traveling Nano-Positioning Stage," Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, vol. 34, no. 3, pp. 497-506, January 2010.
[25] T. Ikeda, 'Basic Piezoelectric Material,' Second Print of the First Edition vols. Tainan City: Fu Han Publishing Inc, 2001.
[26] J. M. Jou, 'Piezoelectricity Mechanics,' First Print of he First Edition vols. Taipei City: Chuan Hwa Book Co., Ltd., 2003.
[27] Y. J. Wang, Y. C. Chen, and S. C. Shen, "Design and analysis of a standing-wave trapezoidal ultrasonic linear motor," Journal of Intelligent Material Systems and Structures, vol. 26, no. 17, pp. 2295-2303, October 2014.
[28] Halliday, D., J. Walker, and R. Resnick. 'Principles of Physics,' Ninth Edition ed: John Wilely & Sons, Inc., 2010.
[29] Devices, Analog. "AD7150 Evaluation Board User Guide," 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code