Responsive image
博碩士論文 etd-0705116-215810 詳細資訊
Title page for etd-0705116-215810
論文名稱
Title
NDC80在大腸癌進展中的角色與造成基因體不穩定性及當成治療標的的可行性
The Role of NDC80 in Colon Cancer Progression, Altered Genomic Instability and Its Therapeutic Potential
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-15
關鍵字
Keywords
非整倍性、RAPD-PCR、NDC80、結腸直腸癌、染色體不穩定性
Aneuploidy, chromosomal instability, RAPD-PCR, NDC80, colorectal cancer
統計
Statistics
本論文已被瀏覽 5736 次,被下載 52
The thesis/dissertation has been browsed 5736 times, has been downloaded 52 times.
中文摘要
非整倍性和染色體不穩定(CIN)是人類癌症中常見的異常。有絲分裂紡錘體檢查點的改變可能導致這些現象。為了探討染色體不穩定和結腸直腸癌之間的相關性作為診斷或預後標誌物和形成新的治療策略的可能性。在本篇論文中,使用生物資訊資料分析(infromatics-base assay)做為基礎的分析,找出大腸癌中58個和染色體分離的相關基因。其中三個基因,NDC80,Nuf2和SPC25屬於NDC80複合體,其複合體在染色體分離具有關鍵作用。為了了解NDC80在結腸癌組織的表達,以結腸直腸癌組織切片針對NDC80蛋白質進行免疫組織化學染色。141例結腸直腸癌組織中有90例具有較高的NDC80表達,然而相鄰的正常組織未檢測到NDC80表達。為了闡明NDC80在結腸直腸癌腫瘤進展的重要意義,我們與主要的臨床特徵進行分析。NDC80高表達與組織病理學中T-分期(T2〜T3,P = 0.002),晚期腫瘤(第II期及第III期,P <0.001)密切相關。結直腸癌中,第II和III期大腸癌患者,NDC80高表達有較低的12年存活率。為了進一步了解NDC80在結腸癌細胞中的作用和基因組不穩定性,我們用RAPD-PCR檢測,分析非整倍性和染色體不穩定(CIN)是人類癌症中常見的異常。有絲分裂紡錘體檢查點的改變可能導致這些現象。為了探討染色體不穩定和結腸直腸癌之間的相關性作為診斷或預後標誌物和形成新的治療策略的可能性。在本篇論文中,使用生物資訊資料分析(infromatics-base assay)做為基礎的分析,找出大腸癌中58個和染色體分離的相關基因。其中三個基因,NDC80,Nuf2和SPC25屬於NDC80複合體,其複合體在染色體分離具有關鍵作用。為了了解NDC80在結腸癌組織的表達,以結腸直腸癌組織切片針對NDC80蛋白質進行免疫組織化學染色。141例結腸直腸癌組織中有90例具有較高的NDC80表達,然而相鄰的正常組織未檢測到NDC80表達。為了闡明NDC80在結腸直腸癌腫瘤進展的重要意義,我們與主要的臨床特徵進行分析。NDC80高表達與組織病理學中T-分期(T2〜T3,P = 0.002),晚期腫瘤(第II期及第III期,P <0.001)密切相關。結直腸癌中,第II和III期大腸癌患者,NDC80高表達有較低的12年存活率。為了進一步了解NDC80在結腸癌細胞中的作用和基因組不穩定性,我們用RAPD-PCR檢測,分析NDC80表現量在DLD-1(二倍體/ CIN -)和HT-29(非整倍體/ CIN+)結腸癌細胞的基因組不穩定性相關性。結果顯示HT-29細胞與對照組ARPE19細胞相比,有較高的基因組改變。此外,使用FFPE CRC組織切片中抽取DNA樣本,比較高NDC80基因表達和低NDC80表達的差異。結果說明了NDC80表達高低與基因組改變是相關的。為了研究NDC80在結腸癌細胞生長的作用,NDC80蛋白表達抑制的大腸癌細胞株。使用CellTiter測定癌細胞生長率和集落形成試驗(Clonogenic assay),結果HT-29細胞減少50%,但在DLD-1細胞減少70%以上。形態學檢查在細胞核顯示,轉染NDC80 RNAi會導致多核細胞,HT-29細胞只有5倍上升,但DLD-1細胞上升13倍。使用類流式影像(Image-flow)細胞測定法,在HT-29結腸癌細胞knockdownNDC80會增加sub G1階段和G2 / M期。此外,我們分析了一些染色體分離和染色體不穩定(CIN)相關的基因,我們可以發現細胞週期素B1蛋白下調,separase和securin分別上調在HT-29細胞,但不是在DLD-1細胞。這些結果表明抑制NDC80基因表達在結腸癌細胞可能會擾亂的染色體分離相關基因的表達和增加基因組不穩定性導致癌細胞死亡。
Abstract
Aneuploidy and chromosomal instability (CIN) are common abnormalities in human cancer. Alterations of the mitotic spindle checkpoint are likely to contribute to these phenotypes. To elucidate the correlation between chromosomal instability and colorectal cancer might serve as diagnostic or prognostic markers and form the basis for novel therapeutic strategies. In this study, we used aninfromatics-base analysis to figure out 58 chromosome segregation genes in CRC. Three of 58 chromosome segregation genes, NDC80, Nuf2 and SPC25 belong to the NDC80 complex, which complex play a critical role in chromosome segregation. In order to understand the NDC80 expression in colon cancer tissue, we performed the immunohistochemistry stain for NDC80 protein using the colorectal cancer tissue section. 90 out of 141 CRCs had high NDC80 expression, however NDC80 expression was not detectable in adjacent normal part. To elucidate the significance of NDC80 in the tumor progression of CRC, we correlated theNDC80 protein expression with the major clinicopathological features. Histopathologically, NDC80 high-expression closely correlated with high-pathological T-staging (T2~T3, p=0.002), and high-stage tumors (stages II, III, p<0.001). CRCs with NDC80 high-expression had lower 12-year survival than those without the high-expression in stage II and III CRC patients. To further elucidate the role of NDC80 and genomic instability in colon cancer cells, we used RAPD-PCR assay to investigate the correlation of NDC80 expression level and genomic instability in DLD-1 (diploidy/CIN -) and HT-29 (aneuploidy/ CIN+) colon cancer cells. Therewere higher genetic alterations inHT-29 cell by compared with the reference ARPE19 cell. Furthermore, usingthe DNA samples extracted from FFPE CRC tissue sections, there were differential genetic alterationpatern between the high-NDC80 expression and low-NDC80 expression.These results indicated the NDC80 expression level should be correlated to the genetic alteration. To investigate the role of NDC80 in colon cancer cell growth, NDC80 protein expression was knockdown in CRC cells. The cancer cell growth rates were decreased 50% in HT-29 cells but 70% in DLD-1 cells using the celltitler assay and clonogenic assay. Morphological examination in cell nucleus revealed that transfection with the NDC80 RNAi oligo lead to multi-nucleated cells, almost 5 folds rise in HT-29cell but 13 folds rise in DLD-1 cell. Using the Image flow-cytometry assay, Down-regulation of NDC80 increased the sub-G1 phase in both colon cancer cells and increased the G2/M phase in HT-29 cells. Moreover, we followed up some chromosome segregation related genes which also contributed to the chromo-somal instability (CIN), we could find the cyclin B1 protein was downregulation, sepa-rase and securin were up regulation in HT-29 cells but not in DLD-1 cell. These results indicate knockdown NDC80 gene expression in colon cancer cell may disrupt the ex-pression of chromosome segregation related genes and increase genomic instability than lead to cancer cell death.
目次 Table of Contents
壹、【緒論】(Introduction)
1.1研究背景 1
1.2研究目的 4
貳、【材料與方法】(Materials and Methods)
2.1:臨床檢體收集 5
2.2試劑(Reagent)和實驗套組(Kit) 5
2.3:免疫組織化學染色(Immunohistochemistry)及判讀 6
2.4:細胞培養及siRNA降解作用 6
2.5:細胞同步(Cell synchronization) 7
2.6反轉錄-聚合酶鏈鎖反應(RT-PCR) 7
2.7隨機擴增多態性去氧核醣核酸(Random amplified polymorphic DNA ) RAPD-PCR 8
2.8細胞增殖分析(Celltiter assay) 10
2.9懸浮細胞分析(Spheroid assay) 10
2.10細胞群落形成分析法(Colony formation assay) 10
2.11免疫螢光染色(immunofluorescence staining) 10
2.12細胞塗片(Cytospin)及R415/DAPI stain 11
2.13:細胞週期分析(Cell cycle assay) 11
2.14西方墨點法(Western blot) 12
2.15統計方法 12
叁、【結果】(Results)
3.1資料庫分析 13
3.2免疫組織化學染色分析NDC80在組織中的表現量 13
3.3分析NDC80的表現與臨床表徵的相關性 14
3.4探討細胞週期與NDC80的關係 14
3.5闡明大腸癌中NDC80與基因不穩定性的關聯 14
3.6抑制NDC80表現會抑制體外腫瘤細胞生長及影響形成细胞群落 15
3.7細胞核形態學檢查,抑制NDC80會造成細胞產生多核現象 16
3.8 RAPD-PCR檢測經NDC80的RNAi處理後癌細胞的遺傳改變增加 17
3.9 類流式細胞影像測定法分析NDC80的降解下調對細胞週期的影響 17
3.10染色體分離相關基因在經NDC80的RNAi處理後的改變 17
肆、【討論】(Discussion) 18
伍、【圖示與圖表】(Figures and Tables) 23
陸、【參考文獻】(References) 52
柒、【附件】(Index) 58
參考文獻 References
1. Jemal, A., et al., Cancer statistics, 2007. CA Cancer J Clin, 2007. 57(1): p. 43-66.
2. Colon Cancer Treatment (PDQ(R)): Health Professional Version, in PDQ Cancer Information Summaries. 2002: Bethesda (MD).
3. Thorson, A.G., J.A. Knezetic, and H.T. Lynch, A century of progress in hereditary nonpolyposis colorectal cancer (Lynch syndrome). Dis Colon Rectum, 1999. 42(1): p. 1-9.
4. Richards, M.E., R.R. Rickert, and F.C. Nance, Crohn's disease-associated carcinoma. A poorly recognized complication of inflammatory bowel disease. Ann Surg, 1989. 209(6): p. 764-73.
5. Haggar, F. and R. Boushey, Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clinics in Colon and Rectal Surgery, 2009. 22(04): p. 191-197.
6. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
7. Burke, H.B., Outcome prediction and the future of the TNM staging system. J Natl Cancer Inst, 2004. 96(19): p. 1408-9.
8. Patanaphan, V. and O.M. Salazar, Colorectal cancer: metastatic patterns and prognosis. South Med J, 1993. 86(1): p. 38-41.
9. Yoo, P.S., et al., Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer, 2006. 6(3): p. 202-7.
10. Hachimaru, A., et al., Repeat pulmonary resection for recurrent lung metastases from colorectal cancer: an analysis of prognostic factors. Interact Cardiovasc Thorac Surg, 2016.
11. Lee, W.S., et al., Pulmonary resection for metastases from colorectal cancer: prognostic factors and survival. Int J Colorectal Dis, 2007. 22(6): p. 699-704.
12. Margaret E. Clark, R.R.S., Liver-directed therapies in metastatic colorectal cancer. J Gastrointest Oncol 2014. 5(5): p. 374-387.
13. Villeneuve, P. and R. Sundaresan, Surgical Management of Colorectal Lung Metastasis. Clinics in Colon and Rectal Surgery, 2009. 22(04): p. 233-241.
14. Sun, W. and D.G. Haller, Adjuvant therapy of colon cancer. Semin Oncol, 2005. 32(1): p. 95-102.
15. Lin, Y.L., K.H. Yeh, and A.L. Cheng, Recent advances in the treatment of metastatic colorectal cancer in Taiwan. J Formos Med Assoc, 2011. 110(1): p. 1-3.
16. Prados, J., et al., Colon cancer therapy: recent developments in nanomedicine to improve the efficacy of conventional chemotherapeutic drugs. Anticancer Agents Med Chem, 2013. 13(8): p. 1204-16.
17. DeLuca, J.G., et al., Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell, 2006. 127(5): p. 969-82.
18. Cheeseman, I.M., et al., The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell, 2006. 127(5): p. 983-97.
19. Chen, Y., et al., HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol, 1997. 17(10): p. 6049-56.
20. Chen, Y., et al., Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem, 2002. 277(51): p. 49408-16.
21. Hayama, S., et al., Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis. Cancer Res, 2006. 66(21): p. 10339-48.
22. Funabiki, H. and D.J. Wynne, Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma, 2013. 122(3): p. 135-58.
23. Varma, D. and E.D. Salmon, The KMN protein network--chief conductors of the kinetochore orchestra. J Cell Sci, 2012. 125(Pt 24): p. 5927-36.
24. Wigge, P.A. and J.V. Kilmartin, The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol, 2001. 152(2): p. 349-60.
25. Wei, R.R., et al., Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure, 2006. 14(6): p. 1003-9.
26. Ciferri, C., et al., Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell, 2008. 133(3): p. 427-39.
27. Lin, Y.T., et al., Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. Oncogene, 2006. 25(52): p. 6901-14.
28. Martin-Lluesma, S., V.M. Stucke, and E.A. Nigg, Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science, 2002. 297(5590): p. 2267-70.
29. Du, X.L. and M.R. Wang, [Highly expressed protein in cancer (Hec 1) and chromosome instability]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2007. 29(1): p. 137-42.
30. Diaz-Rodriguez, E., et al., Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16719-24.
31. Qu, Y., et al., Hec1/Ndc80 is overexpressed in human gastric cancer and regulates cell growth. J Gastroenterol, 2014. 49(3): p. 408-18.
32. Linton, A., et al., An RNAi-based screen reveals PLK1, CDK1 and NDC80 as potential therapeutic targets in malignant pleural mesothelioma. Br J Cancer, 2014. 110(2): p. 510-9.
33. Mo, Q.Q., et al., Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel. Acta Pharmacol Sin, 2013. 34(4): p. 541-8.
34. Bieche, I., et al., Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy. Mol Cancer, 2011. 10: p. 23.
35. Kaneko, N., et al., siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis. Biochem Biophys Res Commun, 2009. 390(4): p. 1235-40.
36. Xiao, G.F. and H.H. Tang, [Expression and clinical significance of highly expressed protein in cancer (Hec 1) in human primary gallbladder carcinoma]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2008. 24(9): p. 910-2.
37. Wang, H., et al., The mitotic regulator Hec1 is a critical modulator of prostate cancer through the long non-coding RNA BX647187 in vitro. Biosci Rep, 2015. 35(6).
38. Zhu, P., et al., A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma. Oncotarget, 2015. 6(38): p. 41383-97.
39. Glinsky, G.V., O. Berezovska, and A.B. Glinskii, Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest, 2005. 115(6): p. 1503-21.
40. Perez de Castro, I. and M. Malumbres, Mitotic Stress and Chromosomal Instability in Cancer: The Case for TPX2. Genes Cancer, 2012. 3(11-12): p. 721-30.
41. Altieri, D.C., Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol Cancer Ther, 2006. 5(3): p. 478-82.
42. Allred, D.C., et al., Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol, 1998. 11(2): p. 155-68.
43. Burrell, R.A., et al., Replication stress links structural and numerical cancer chromosomal instability. Nature, 2013. 494(7438): p. 492-6.
44. Yamazaki, M., et al., Genetic relationships among Glycyrrhiza plants determined by RAPD and RFLP analyses. Biol Pharm Bull, 1994. 17(11): p. 1529-31.
45. Kohjyouma, M., et al., Random amplified polymorphic DNA analysis and variation of essential oil components of Atractylodes plants. Biol Pharm Bull, 1997. 20(5): p. 502-6.
46. Ong, T.M., et al., Detection of genomic instability in lung cancer tissues by random amplified polymorphic DNA analysis. Carcinogenesis, 1998. 19(1): p. 233-5.
47. Zhang, S.H., et al., Genomic instability in hepatocellular carcinoma revealed by using the random amplified polymorphic DNA method. J Cancer Res Clin Oncol, 2004. 130(12): p. 757-61.
48. Xian, Z.H., et al., Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment. World J Gastroenterol, 2005. 11(26): p. 4102-7.
49. Ganem, N.J., Z. Storchova, and D. Pellman, Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev, 2007. 17(2): p. 157-62.
50. Zeitoun, G., [Cellular and molecular deregulations driving the metastatic phenotype]. Med Sci (Paris), 2009. 25 Spec No 1: p. 29-32.
51. Sanz Esponera, J., [Predictive molecular marker of distant metastasis in colorectal cancer]. An R Acad Nac Med (Madr), 2003. 120(3): p. 545-55; discussion 555-7.
52. Ly, P., et al., Characterization of aneuploid populations with trisomy 7 and 20 derived from diploid human colonic epithelial cells. Neoplasia, 2011. 13(4): p. 348-57.
53. Rampazzo, E., et al., Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer, 2010. 102(8): p. 1300-5.
54. Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. Gastroenterology, 2010. 138(6): p. 2059-72.
55. Mettu, R.K., et al., A 12-gene genomic instability signature predicts clinical outcomes in multiple cancer types. Int J Biol Markers, 2010. 25(4): p. 219-28.
56. Mouradov, D., et al., Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol, 2013. 108(11): p. 1785-93.
57. Grady, W.M., Genomic instability and colon cancer. Cancer Metastasis Rev, 2004. 23(1-2): p. 11-27.
58. Xing, X.K., et al., NDC80 promotes proliferation and metastasis of colon cancer cells. Genet Mol Res, 2016. 15(2).
59. van Diest, P.J., et al., A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Cooperative Group. J Clin Pathol, 1997. 50(10): p. 801-4.
60. Aranha, O. and A.B. Benson, 3rd, Adjuvant therapy for colon cancer. Curr Gastroenterol Rep, 2007. 9(5): p. 415-21.
61. Lee, A.J., et al., Chromosomal instability confers intrinsic multidrug resistance. Cancer Res, 2011. 71(5): p. 1858-70.
62. Huang, S., Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev, 2013. 32(3-4): p. 423-48.
63. Albertson, D.G., et al., Chromosome aberrations in solid tumors. Nat Genet, 2003. 34(4): p. 369-76.
64. McGranahan, N., et al., Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep, 2012. 13(6): p. 528-38.
65. Pfau, S.J. and A. Amon, Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep, 2012. 13(6): p. 515-27.
66. Holland, A.J. and D.W. Cleveland, Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep, 2012. 13(6): p. 501-14.
67. Gurzov, E.N. and M. Izquierdo, RNA interference against Hec1 inhibits tumor growth in vivo. Gene Ther, 2006. 13(1): p. 1-7.
68. Liu, B., et al., ShRNA-mediated silencing of the Ndc80 gene suppress cell proliferation and affected hepatitis B virus-related hepatocellular carcinoma. Clin Res Hepatol Gastroenterol, 2015.
69. Li, L., et al., Development of recombinant adeno-associated virus vectors carrying small interfering RNA (shHec1)-mediated depletion of kinetochore Hec1 protein in tumor cells. Gene Ther, 2007. 14(10): p. 814-27.
70. Numnum, T.M., et al., Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines. Gynecol Oncol, 2008. 108(1): p. 34-41.
71. Sethi, G., et al., An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer. PLoS One, 2012. 7(10): p. e47086.
72. Hamburger, A.W. and S.E. Salmon, Primary bioassay of human tumor stem cells. Science, 1977. 197(4302): p. 461-3.
73. Shoemaker, R.H., et al., Application of a human tumor colony-forming assay to new drug screening. Cancer Res, 1985. 45(5): p. 2145-53.
74. Raymond, E., et al., Activity of oxaliplatin against human tumor colony-forming units. Clin Cancer Res, 1998. 4(4): p. 1021-9.
75. Zekanowski, C. and U. Wojda, Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer's disease. Acta Neurobiol Exp (Wars), 2009. 69(2): p. 232-53.
76. Gorbsky, G.J., Cell cycle checkpoints: arresting progress in mitosis. Bioessays, 1997. 19(3): p. 193-7.
77. Shete, A., et al., Spatial quantitation of FISH signals in diploid versus aneuploid nuclei. Cytometry A, 2014. 85(4): p. 339-52.
78. Nath, J. and K.L. Johnson, A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem, 2000. 75(2): p. 54-78.
79. Wei, X., et al., Hec1 inhibition alters spindle morphology and chromosome alignment in porcine oocytes. Mol Biol Rep, 2014. 41(8): p. 5089-95.
80. Qiu, X.L., et al., Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 analogues. J Med Chem, 2009. 52(6): p. 1757-67.
81. Lee, Y.S., et al., Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: optimization of in vitro potencies and pharmacokinetic properties. J Med Chem, 2014. 57(10): p. 4098-110.
82. Huang, L.Y., et al., Characterization of the biological activity of a potent small molecule Hec1 inhibitor TAI-1. J Exp Clin Cancer Res, 2014. 33: p. 6.
83. Huang, L.Y., et al., Activity of a novel Hec1-targeted anticancer compound against breast cancer cell lines in vitro and in vivo. Mol Cancer Ther, 2014. 13(6): p. 1419-30.
84. Huang, L.Y., et al., Inhibition of Hec1 as a novel approach for treatment of primary liver cancer. Cancer Chemother Pharmacol, 2014. 74(3): p. 511-20.
85. Duesberg, P. and D. Rasnick, Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton, 2000. 47(2): p. 81-107.
衛生統計,衛生福利部國民健康署,2007~2011.
衛生統計,大腸癌歷年死亡情形資料,衛生福利部統計處,2002~2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code