Responsive image
博碩士論文 etd-0705118-232810 詳細資訊
Title page for etd-0705118-232810
論文名稱
Title
結合晶格波茲曼與離散模式法預測微米與奈米粒子在編織濾網的捕捉效率
A hybrid LB-DPM method to predict collection efficiency of woven screens for microparticles and nanoparticles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-06
關鍵字
Keywords
編織纖維濾網、奈米氣溶膠顆粒、微米氣溶膠顆粒、結合晶格波茲曼與離散模式法、氣溶膠微粒過濾器效率
screen collection efficiency, microparticle, lattice Boltzmann-discrete phase model, woven wire screen, nanoparticle
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
懸浮微粒為一種主要的空氣汙染源,編織纖維濾網可以移除空氣中的微米和奈米顆粒。本研究使用二維結合晶格波茲曼與離散模式法預測編織纖維濾網的捕捉效率,並將模擬結果與已發表的參考文獻實驗結果比較。模擬模型使用了微米微粒和奈米微粒,懸浮微粒的尺寸介於0.3微米到100微米及3到20奈米。本論文結合了二個項目:第一個研究是微米粒子捕捉模型,氣體流速為每秒0.48公分,在此項目中使用了五種不同篩孔大小的濾網,篩孔大小從11微米到160微米;第二個研究則是奈米粒子經由篩孔大小126微米的不銹鋼編織濾網的捕捉模型,流體速度為每秒4.17、5.63和7.04公分,此外考慮了不同氣體溫度對捕捉效率的熱效應,溫度範圍介於296K至500K。本研究使用一圓形纖維濾網截面模型以模擬半無限排列纖維濾網,為簡化真實濾網的三維結構,分別使用了透過纖維編織濾網的物理特性所發展的五種二維模型:交錯編織篩孔尺寸模型、截面篩孔尺寸模型、開口面積模型、體積分率模型、修正方程式模型。與文獻實驗資料的比較結果顯示本模型可以準確預測濾網捕捉效率,另外透過粒子於纖維表面的分佈測試有助於了解在不同操作條件下的捕捉機理,本研究成果以期成為設計工具改善微粒過濾、空氣淨化等裝置。
Abstract
The present study uses a 2D hybrid lattice Boltzmann-discrete phase model method to predict screen collection efficiency in woven wire screen. The computational results are used to compare with published experimental data that have not been computationally verified in the literature. The filtration processes are investigated for particles that are micron (0.3-100 μm) and nanometer (3-20 nm) in size. This thesis is composed of two subjects. The first study analyzes the filtration of microparticles at gas flow velocities of 0.48 cm/s via mesh screens with five different pore sizes in the range of 11-160 μm. The second study investigates the filtration of nanoparticles via stainless steel mesh screen with a pore size of 126 μm, where the filtration process is conducted with gas flow velocities of 4.17, 5.63 and 7.04 cm/s. Besides, the thermal effect on the filtration performance is revealed in the second study by varying the gas temperature (296K, 400K and 500K). For these two subjects, the computational domain contains a circular fiber that represents the cross-section of a semi-infinite fiber array. In order to simulate the 3-D woven screen structures, several 2-D models are proposed using different physical specifications of mesh screens including open area, pore size and packing density. The results show that the data predicted with a modified pore-size-based model are able to show excellent agreement with experiments. In addition, the particle distributions along the fiber surface are used to estimate the particle capture mechanisms together with the deposition patterns in the corresponding operational conditions.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables xi
Nomenclature xii
1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.3 Objective 6
2 Computational details 7
2.1 Computational model 7
2.1.1 Model of microparticle filtration 7
2.1.2 Model of nanoparticle filtration model 10
2.1.3 Assumptions and structural mapping 11
2.2 Fluid phase equation 15
2.2.1 Lattice Boltzmann method 15
2.2.2 Boundary conditions 18
2.3 Particle phase equation 21
2.3.1 Transport equation 21
3 Results and discussion 27
3.1 Pressure drop 27
3.2 Screen collection efficiency 29
3.2.1 Screen collection efficiency for microparticles 29
3.2.2 Screen collection efficiency for nanoparticles 32
3.3 Particle distribution 34
3.3.1 Distribution of microparticles 34
3.3.2 Distribution of nanoparticles 39
3.4 Velocity contours and particle distribution 42
3.5 The force on the particle 44
4 Conclusions 46
5 References 47
參考文獻 References
[1] Grahame TJ, Schlesinger RB. Health effects of airborne particulate matter: do we know enough to consider regulating specific particle types or sources? Inhalation Toxicology. 2007;19:457-81.
[2] Thomas JW, Hinchliffe LE. Filtration of 0· 001 μm particles by wire screens. Journal of Aerosol Science. 1972;3:387IN3391-390IN4393.
[3] Gentry J, Choudhary K. Collection efficiency and pressure drop in grid filters of high packing densities at intermediate Reynolds numbers. Journal of Aerosol Science. 1975;6:277IN1287-286IN2290.
[4] Cheng Y, Yeh H, Brinsko K. Use of wire screens as a fan model filter. Aerosol Science and Technology. 1985;4:165-74.
[5] Cheng Y-S, Yamada Y, Yeh H-C. Diffusion deposition on model fibrous filters with intermediate porosity. Aerosol Science and Technology. 1990;12:286-99.
[6] Fu T-H, Cheng M-T, Shaw DT. Filtration of chain aggregate aerosols by model screen filter. Aerosol Science and Technology. 1990;13:151-61.
[7] Alonso M, Kousaka Y, Hashimoto T, Hashimoto N. Penetration of nanometer-sized aerosol particles through wire screen and laminar flow tube. Aerosol Science and Technology. 1997;27:471-80.
[8] Myojo T. A simple method to determine the length distribution of fibrous aerosols. Aerosol Science & Technology. 1999;30:30-9.
[9] Alonso M, Alguacil F, Nomura T. Turbulent deposition of aerosol nanoparticles on a wire screen. Journal of Aerosol Science. 2001;32:1359-67.
[10] Han TW. Experimental and numerical studies of aerosol penetration through screens: Texas A & M University; 2007.
[11] Son M, Park H, Park M, Wang J, Shin WG. Silver nanowire penetration through screen filter. Aerosol Science and Technology. 2014;48:480-8.
[12] Wang J, Kim SC, Pui DY. Measurement of multi-wall carbon nanotube penetration through a screen filter and single-fiber analysis. Journal of Nanoparticle Research. 2011;13:4565-73.
[13] Wang J, Kim SC, Pui DY. Carbon nanotube penetration through a screen filter: numerical modeling and comparison with experiments. Aerosol Science and Technology. 2011;45:443-52.
[14] Brewer JM, Goren SL. Evaluation of metal oxide whiskers grown on screens for use as aerosol filtration media. Aerosol science and technology. 1984;3:411-29.
[15] Yamamoto N, Kumagai K, Fujii M, Shendell DG, Endo O, Yanagisawa Y. Size-dependent collection of micrometer-sized particles using nylon mesh. Atmospheric Environment. 2005;39:3675-85.
[16] Tuchman DP, Volkwein JC, Vinson RP. Implementing infrared determination of quartz particulates on novel filters for a prototype dust monitor. Journal of Environmental Monitoring. 2008;10:671-8.
[17] Cena LG, Ku BK, Peters TM. Particle collection efficiency for nylon mesh screens. Aerosol Science and Technology. 2012;46:214-21.
[18] Kirsh V, Kirsh A, Negin A, Shabatin A. Diffusion deposition of submicron aerosol particles in screen filters. Colloid Journal. 2015;77:298-305.
[19] Ku BK, Deye GJ, Turkevich LA. Efficacy of screens in removing long fibers from an aerosol stream–sample preparation technique for toxicology studies. Inhalation Toxicology. 2014;26:70-83.
[20] Lim S, Park H, Shin WG. Experimental investigation and numerical modeling of the orientation angle of silver nanowires passing through polyester filters. Aerosol Science and Technology. 2017;51:292-300.
[21] Emi H, Kanaoka C, Kuwabara Y. The diffusion collection efficiency of fibers for aerosol over a wide range of Reynolds numbers. Journal of Aerosol Science. 1982;13:403-13.
[22] Shin W, Mulholland G, Kim S, Pui D. Experimental study of filtration efficiency of nanoparticles below 20nm at elevated temperatures. Journal of Aerosol Science. 2008;39:488-99.
[23] Heim M, Mullins BJ, Wild M, Meyer J, Kasper G. Filtration efficiency of aerosol particles below 20 nanometers. Aerosol Science and Technology. 2005;39:782-9.
[24] Kim CS, Bao L, Okuyama K, Shimada M, Niinuma H. Filtration efficiency of a fibrous filter for nanoparticles. Journal of Nanoparticle Research. 2006;8:215-21.
[25] Kim SC, Harrington MS, Pui DY. Experimental study of nanoparticles penetration through commercial filter media. Nanotechnology and Occupational Health: Springer; 2006. p. 117-25.
[26] Japuntich DA, Franklin LM, Pui DY, Kuehn TH, Kim SC, Viner AS. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers. Journal of Nanoparticle Research. 2007;9:93-107.
[27] Steffens J, Coury J. Collection efficiency of fiber filters operating on the removal of nano-sized aerosol particles: I—Homogeneous fibers. Separation and Purification Technology. 2007;58:99-105.
[28] Huang S-H, Chen C-W, Chang C-P, Lai C-Y, Chen C-C. Penetration of 4.5nm to 10μm aerosol particles through fibrous filters. Journal of Aerosol Science. 2007;38:719-27.
[29] Van Gulijk C, Bal E, Schmidt-Ott A. Experimental evidence of reduced sticking of nanoparticles on a metal grid. Journal of Aerosol Science. 2009;40:362-9.
[30] Heim M, Attoui M, Kasper G. The efficiency of diffusional particle collection onto wire grids in the mobility equivalent size range of 1.2–8nm. Journal of Aerosol Science. 2010;41:207-22.
[31] Brochot C, Mouret G, Michielsen N, Chazelet S, Thomas D. Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media. Journal of Physics: Conference Series: IOP Publishing; 2011. p. 012068.
[32] Thomas D, Mouret G, Cadavid-Rodriguez M-C, Chazelet S, Bemer D. An improved model for the penetration of charged and neutral aerosols in the 4 to 80nm range through stainless steel and dielectric meshes. Journal of Aerosol Science. 2013;57:32-44.
[33] Chen S-C, Wang J, Fissan H, Pui DY. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment—Spherical particles. Atmospheric Environment. 2013;77:385-93.
[34] Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan. 1959;14:527-32.
[35] Happel J. Viscous flow relative to arrays of cylinders. AIChE Journal. 1959;5:174-7.
[36] Lee K, Liu B. Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology. 1982;1:147-61.
[37] Shou D, Fan J, Zhang H, Qian X, Ye L. Filtration efficiency of non-uniform fibrous filters. Aerosol Science and Technology. 2015;49:912-9.
[38] Zhu C, Lin C-H, Cheung CS. Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technology. 2000;112:149-62.
[39] Kirsch AA, Fuchs N. Studies on fibrous aerosol filters—II. Pressure drops in systems of parallel cylinders. Annals of Occupational Hygiene. 1967;10:23-30.
[40] Kirsch A, Fuchs N. Studies on fibrous aerosol filters—III Diffusional deposition of aerosols in fibrous filters. Annals of Occupational Hygiene. 1968;11:299-304.
[41] Stechkina I, Kirsch A, Fuchs N. Studies on fibrous aerosol filters—iv calculation of aerosol deposition in model filters in the range of maximum penetration. Annals of Occupational Hygiene. 1969;12:1-8.
[42] Cheng Y, Yeh H. Theory of a screen-type diffusion battery. Journal of Aerosol Science. 1980;11:313-20.
[43] Liu ZG, Wang PK. Pressure drop and interception efficiency of multifiber filters. Aerosol Science and Technology. 1997;26:313-25.
[44] Cheng Y, Keating J, Kanapilly G. Theory and calibration of a screen-type diffusion battery. Journal of Aerosol Science. 1980;11:549-56.
[45] Masselot A, Chopard B. A lattice Boltzmann model for particle transport and deposition. EPL (Europhysics Letters). 1998;42:259.
[46] Chopard B, Masselot A. Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport. Future Generation Computer Systems. 1999;16:249-57.
[47] Chopard B, Masselot A, Dupuis A. A lattice gas model for erosion and particles transport in a fluid. Computer Physics Communications. 2000;129:167-76.
[48] Müller T, Meyer J, Kasper G. Low Reynolds number drag and particle collision efficiency of a cylindrical fiber within a parallel array. Journal of Aerosol Science. 2014;77:50-66.
[49] Jafari S, Salmanzadeh M, Rahnama M, Ahmadi G. Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method. Journal of Aerosol Science. 2010;41:198-206.
[50] Afrouzi HH, Sedighi K, Farhadi M, Moshfegh A. Lattice Boltzmann analysis of micro-particles transport in pulsating obstructed channel flow. Computers & Mathematics with Applications. 2015;70:1136-51.
[51] Huang H, Wang K, Zhao H. Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technology. 2016;292:232-41.
[52] Lin KC, Patel R, Tsai J-S. Filtration of aerosol particles by clean elliptical fibers with relevance to pore size: A lattice Boltzmann-cellular automaton model. Computers & Fluids. 2017;156:534-44.
[53] Lin KC, Tao H, Lee K-W. An Early Stage of Aerosol Particle Transport in Flows Past Periodic Arrays of Clear Staggered Obstructions: A Computational Study. Aerosol Science and Technology. 2014;48:1299-307.
[54] Ansari V, Goharrizi AS, Jafari S, Abolpour B. Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice Boltzmann method. Computers & Fluids. 2015;108:170-8.
[55] Li W, Shen S, Li H. Study and optimization of the filtration performance of multi-fiber filter. Adv Powder Technol. 2016;27:638-45.
[56] Fotovati S, Tafreshi HV, Pourdeyhimi B. Influence of fiber orientation distribution on performance of aerosol filtration media. Chemical Engineering Science. 2010;65:5285-93.
[57] Wang H, Zhao H, Guo Z, Zheng C. Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann two-phase flow model. Powder Technology. 2012;227:111-22.
[58] Cai R-R, Zhang L-Z. Modeling of dynamic deposition and filtration processes of airborne particles by a single fiber with a coupled lattice Boltzmann and discrete element method. Building and Environment. 2016;106:274-85.
[59] Wang H, Zhao H, Wang K, He Y, Zheng C. Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. Journal of Aerosol Science. 2013;66:164-78.
[60] Hosseini S, Tafreshi HV. Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Computers & Fluids. 2012;66:157-66.
[61] Filippova O, Hänel D. Lattice-Boltzmann simulation of gas-particle flow in filters. Computers & Fluids. 1997;26:697-712.
[62] Qian F, Huang N, Lu J, Han Y. CFD–DEM simulation of the filtration performance for fibrous media based on the mimic structure. Computers & Chemical Engineering. 2014;71:478-88.
[63] Lin KC, Tsai J-S. Hybrid lattice-Boltzmann Lagrangian simulations of nanoparticle filtration experiments with mesh screens. Journal of Aerosol Science. 2018.
[64] Miyagi T. Viscous flow at low Reynolds numbers past an infinite row of equal circular cylinders. Journal of the Physical Society of Japan. 1958;13:493-6.
[65] He X, Luo L-S. Lattice Boltzmann model for the incompressible Navier–Stokes equation. Journal of Statistical Physics. 1997;88:927-44.
[66] Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review. 1954;94:511.
[67] Qian Y, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters). 1992;17:479.
[68] Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids. 1997;9:1591-8.
[69] Girimaji S. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. American Institute of Aeronautics and Astronautics; 2012.
[70] Mei R, Shyy W, Yu D, Luo L-S. Lattice Boltzmann method for 3-D flows with curved boundary. Journal of Computational Physics. 2000;161:680-99.
[71] Mei R, Shyy W. On the finite difference-based lattice Boltzmann method in curvilinear coordinates. Journal of Computational Physics. 1998;143:426-48.
[72] Mei R, Luo L-S, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. Journal of Computational Physics. 1999;155:307-30.
[73] Reist P. Aerosol science and technology.: New York: McGraw-Hill; 1993.
[74] Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol science and technology. 1992;16:209-26.
[75] Li A, Ahmadi G. Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science. 1993;31:435-51.
[76] Zare A, Abouali O, Ahmadi G. Computational investigation of airflow, shock wave and nano-particle separation in supersonic and hypersonic impactors. Journal of Aerosol Science. 2007;38:1015-30.
[77] Saffman P. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics. 1965;22:385-400.
[78] Mei R. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. International Journal of Multiphase Flow. 1992;18:145-7.
[79] Mouret G, Chazelet S, Thomas D, Bemer D. Discussion about the thermal rebound of nanoparticles. Separation and Purification Technology. 2011;78:125-31.
[80] Johnson KL, Kendall K, Roberts A. Surface energy and the contact of elastic solids. Proc R Soc Lond A. 1971;324:301-13.
[81] Bradley RS. LXXIX. The cohesive force between solid surfaces and the surface energy of solids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1932;13:853-62.
[82] Hamaker H. The London—van der Waals attraction between spherical particles. physica. 1937;4:1058-72.
[83] Tsai J-s. Filtration of Aerosol Particles by Wire Screens: A Computational Study Using a Hybrid Lattice-Boltzmann Lagrangian Method. 2016.
[84] Kasper G, Schollmeier S, Meyer J. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. Journal of Aerosol Science. 2010;41:1167-82.
[85] Kanaoka C, Emi H, Hiragi S, Myojo T. Morphology of particulate agglomerates on a cylindrical fiber and collection efficiency of a dust-loaded filter. Aerosols, Formation, and Reactivity, 2nd International Conference, Berlin1986. p. 674-7.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code