Responsive image
博碩士論文 etd-0705120-094648 詳細資訊
Title page for etd-0705120-094648
論文名稱
Title
針對高傳輸速率空間多工輔助廣義空間調變之低複雜度樹狀搜尋偵測器設計
Designs of Low-Complexity Tree search-based Detector for High-Rate Spatial Multiplexing Aided Generalized Spatial Modulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-06-29
繳交日期
Date of Submission
2020-08-05
關鍵字
Keywords
空間多工輔助廣義空間調變、廣義空間調變、多輸入多輸出、碼本輔助樹狀搜尋器檢測器
spatial multiplexing aided generalized spatial modulation (SMx-GSM), Multiple-Input Multiple-Output (MIMO), codebook-assisted tree search detector (CATSD), generalized spatial modulation (GSM)
統計
Statistics
本論文已被瀏覽 5768 次,被下載 29
The thesis/dissertation has been browsed 5768 times, has been downloaded 29 times.
中文摘要
空間多工輔助調製是一種無線傳輸技術,該技術結合了垂直貝爾實驗室空時結構(vertical bell labs space-time, V-BLAST)和空間調製(spatial modulation, SM)的概念,儘管射頻(radio frequency, RF)發射器電路數量減少了卻可實現較高的傳輸速率。在本文中,為了進一步提高傳輸速率,我們通過將V-BLAST結構與廣義SM(generalized spatial modulation, GSM)碼本相結合,構建了高速率空間多工輔助廣義空間調製(spatial multiplexing aided generalized spatial modulation, SMx-GSM)。在這項研究中,我們基於廣度優先搜索算法設計了一種有效的低複雜度檢測器,稱為碼本輔助樹狀搜索檢測器(codebook-assisted tree search detector, CATSD)。因此,對於SMx-SM和SMx-GSM系統,我們有兩種建議的算法CATSD I和CATSD II。而且,我們還為CATSD I和CATSD II提出了一種順序方法,以降低檢測的複雜性。我們提出的算法在每個算法中使用不同的公式,以在碼本中找到每個碼字的成本函數,並在最後給出最佳的可能生存碼字。根據模擬結果顯示,我們針對兩種不同算法提出的檢測器具有更低的檢測複雜度,並且錯誤率(BER)性能得到了極大的改善,尤其是對於具高速率大規模且大量天線組合的SMx-GSM系統。
Abstract
Spatial-Multiplexing aided spatial modulation is a wireless transmission technique, which combines the concepts of both vertical bell labs space-time (V-BLAST) and spatial modulation (SM) for achieving a high transmission rate, despite lowers the number of radio frequency (RF) chains at the transmitter. In this paper, to further increase the rate of the transmission we built a high-rate spatial multiplexing aided generalized spatial modulation (SMx-GSM) by combining the V-BLAST structure with a generalized SM (GSM) codebook. In this research, we designed an effective low complexity detector termed as codebook-assisted tree search detector (CATSD) which is based on the breadth-first search algorithm. Accordingly, we have two types of proposed algorithms CATSD I and CATSD II for both SMx-SM and SMx-GSM systems. Our proposed algorithms use different formulas in each, to find the cost function of each codeword in the codebook and gives the best probable surviving codeword at the end. And also, we have proposed a sequential method for both CATSD I and CATSD II to reduce the detection complexity. Simulation results show that our proposed detector for different algorithms has much lower computational complexity and the bit error rate (BER) performance is much improved when compared with other optimal detectors particularly for the case of high-rate large-scale SMx-GSM system with a large number of active antennas.
目次 Table of Contents
Validation Letter i
Acknowledgement ii
Abstract (Chinese) iii
Abstract (English) iv
Table of Contents v
Table of Figures vii
Table of Tables viii
Chapter 1 Introduction 1
1.1 Research Motivation 3
1.2 Structure of Thesis 4
Chapter 2 Background 5
2.1 MIMO Communication Systems 5
2.2 Spatial Multiplexing 6
2.3 The Basic Structure of Spatial Modulation System 7
2.4 The Basic Structure of Generalized Spatial Modulation System 8
Chapter 3 Spatial Multiplexing Aided Spatial Modulation Scheme 11
3.1 System Model 11
3.2 Designed Codebook-Assisted Tree Search Detector (CATSD) 13
3.2.1 CATSD I Using Formula 1 18
3.2.2 CATSD II Using Formula 2 19
Chapter 4 Spatial Multiplexing Aided Generalized Spatial Modulation Scheme 21
4.1 System Model 21
4.2 Designed Codebook-Assisted Tree Search Detector for SMx-GSM Scheme 23
4.2.1 CATSD I and CATSD II Using Sequence Method 25
Chapter 5 Simulation Results 27
5.1 Complexity Analysis 27
5.2 Comparison of BER Performance and Computational Complexity for the SMx-SM System 29
5.3 Comparison of BER Performance and Computational Complexity for the SMx-GSM System 34
Chapter 6 Conclusion 42
References 43
Abbreviations 47
參考文獻 References
[1] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.
[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[3] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A. Hoeher, "Multiple-antenna techniques for wireless communications—A comprehensive literature survey" IEEE Commun. Surveys Tuts., vol. 11, no. 2, pp. 87-105, Jun. 2009.
[4] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2242, Jul. 2008.
[5] M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multiple-antenna wireless systems - A Survey,” IEEE Commun. Magazine, vol. 49, no. 12, pp. 182-191, Dec. 2011.
[6] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
[7] P. Yang, Y. Xiao, Y. L. Guan, Z. Liu, S. Li, and W. Xiang, “Adaptive SMMIMO for mmWave communications with reduced RF chains,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1472-1485, Jul. 2017.
[8] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,” in Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 1498–1502.
[9] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for MIMO channels,” in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., Cannes, France, Sep. 2008, pp. 1–5.
[10] R. Mesleh, S.S. Ikki and H.M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
[11] E. Basar, “Index modulation techniques for 5G wireless networks”, IEEE Commun. Mag., vol. 54, no. 7, pp. 168-175, Jul. 2016.
[12] X. Zhu, Z. Wang, and J. Cao, "NOMA-based spatial modulation," IEEE Access, vol. 5, pp. 3790-3800, Apr. 2017.
[13] S. Gadhai, A. K. Sah, A. K. Singh, R. Budhiraja, and A. K. Chaturvedi, "New Block-Based Spatial Modulation," IEEE Wireless Commun. Lett., vol. 22, no. 10, pp. 2016-2019, Oct. 2018.
[14] J. Cal-Braz and R. Sampaio-Neto, “Nested maximum likelihood group detection in generalized spatial modulation MIMO systems,” IEEE Commun. Lett., vol. 18, no. 6, pp. 953–956, Jun. 2014.
[15] Y. Xiao, Z. Yang, L. Dan, P. Yang, L. Yin, and W. Xiang, “Low complexity signal detection for generalized spatial modulation,” IEEE Commun. Lett., vol. 18, no. 3, pp. 403–406, Mar. 2014.
[16] C. T. Lin, W.R. Wu, and C. Y. Liu, “Low-complexity ML detectors for generalized spatial modulation systems,” IEEE Trans. Commun., vol. 63, no. 11, pp. 4214–4230, Nov. 2015.
[17] C. E. Chen, C. H. Li, and Y. H. Huang, “An improved ordered-block MMSE detector for generalized spatial modulation,” IEEE Commun. Lett., vol. 19, no. 5, pp. 707–710, May 2015.
[18] J. Wang, S. Jia, and J. Song, “Generalized spatial modulation system with multiple active transmit antennas and low complexity detection scheme,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1605-1615, Apr. 2012.
[19] W. Liu, N. Wang, M. Jin, and H. Xu, “Denoising detection for the generalized spatial modulation system using sparse property,” IEEE Commun. Lett., vol. 18, no. 1, pp. 22–25, Jan. 2014.
[20] J. A. Cal-Braz and R. Sampaio-Neto, “Low-complexity sphere decoding detector for generalized spatial modulation systems,” IEEE Commun. Lett., vol. 18, no. 6, pp. 949–952, Jun. 2014.
[21] L. Xiao, L. Dan, Y. Zhang, Y. Xiao, P. Yang, and S. Li, “A low-complexity detection scheme for generalized spatial modulation sided single carrier systems,” IEEE Commun. Lett., vol. 19, no. 6, pp. 1069–1072, Jun. 2015.
[22] L. Xiao, P. Yang, Y. Zhao, Y. Xiao, J. Liu, and S. Li, “Low-complexity tree search-based detection algorithms for generalized spatial modulation aided single carrier systems,” Proc. IEEE ICC, Kuala Lumpur, Malaysia, pp. 1–6, May 2016.
[23] S. Fan, Y. Xiao, L. Xiao, P. Yang, R. Shi, and K. Deng, “Improved layered message passing algorithms for large-scale generalized spatial modulation systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 66–69, Feb. 2018.
[24] B. Zheng, M. Wen, F. Chen, N. Huang, F. Ji, and H. Yu, “The K-Best sphere decoding for soft detection of generalized spatial modulation,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4803–4816, Nov. 2017.
[25] C. Yang, P. Cheng, Z. Chen, J. A. Zhang, Y. Xiao, and L. Gui, “Near-ML low-complexity detection for generalized spatial modulation”, IEEE Commun. Lett., vol. 20, no. 3, pp. 618–621, Mar. 2016.
[26] L. Xiao, P. Yang, Y. Xiao, S. Fan, M. D. Renzo, W. Xiang, and S. Li, “Efficient compressed sensing detectors for generalized spatial modulation systems,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1284–1298, Feb. 2018.
[27] Y. Chen, W. Cheng, C. Li and Z. J. Haas, "Low-complexity generalized spatial modulation schemes using codebook-assisted MIMO detectors," IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 12358-12362, Dec. 2018.
[28] L. Xiao, Y. Xiao, C. Xu, X. Lei, P. Yang, S. Li, and L. Hanzo, “Compressed-sensing assisted spatial multiplexing aided spatial modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 794–807, Feb. 2018.
[29] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI ISSSE, Pisa, Italy, Oct. 1998, pp. 295–300.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code