Responsive image
博碩士論文 etd-0706101-190822 詳細資訊
Title page for etd-0706101-190822
論文名稱
Title
以有機金屬化學氣相沈積法成長二氧化鈦與鈦酸鋇薄膜之結構特性
Structural Characterization of TiO2 and BaTiO3 Thin Films by MOCVD
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-22
繳交日期
Date of Submission
2001-07-06
關鍵字
Keywords
熱退火、鈦酸鋇、二氧化鈦、有機金屬化學氣相沉積法
Thermal annealing, BaTiO3, TiO2, MOCVD
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
近年來,超大型積體電路採用高介電材料取代二氧化矽做為動態記憶體中電容之介電材料已有增加的趨勢。隨著高密度動態記憶體中電荷儲存結構尺寸之縮減趨向,二氧化鈦與鈦酸鋇由於具有高介電常數、高折射係數和高化學穩定性,故有希望應用於高密度動態記憶體之介電材料。我們採用冷壁、水平式之有機金屬化學氣相沈積法成長二氧化鈦與鈦酸鋇薄膜於矽(100)、砷化鎵(100)、磷化銦(100)及氧化鎂(100)基板, 並將成長溫度在280℃與750℃之間作調變。使用的原料為Ti(i-OC3H7)4、Ba(DPM)2、笑氣與氧氣。二氧化鈦與鈦酸鋇薄膜之成長速率及組成結構受基板溫度與生長氣壓等因素影響。 我們使用 X-ray 繞射分析二氧化鈦之相轉換特性,X-ray繞射結果顯示在不同基板成長之二氧化鈦具有相同之相轉換溫度(450℃)。 單相rutile結構可在450℃以上成長於磷化銦基板; 而單相anatase結構可在450℃以下成長於氧化鎂基板。二氧化鈦之光電特性與其薄膜結構相關。單相rutile(110)結構在500℃以上之成長溫度於磷化銦基板上獲得;同相之anatase(100)結構亦可在300℃與375℃之間成長於氧化鎂(100)基板。另一方面,生長溫度及氧化劑對鈦酸鋇薄膜之電特性與結構造成之影響亦將詳細討論。
然而。二氧化鈦與鈦酸鋇薄膜具有柱狀結構,此結構造成漏電流的路徑,導致介電常數之降低。我們使用熱退火改善二氧化鈦薄膜之結晶特性,介電常數經由熱退火處理後增加至110.08;而漏電流亦可減少至5×10-5 A/cm2。未來期望能朝向改進薄膜之結晶特性的目標前進。

Abstract
In recent years, there has been increasing demands for high dielectric materials to replace SiO2 for high-density dynamic random access memories with ultra large scale integration (ULSI). As the dimensions of the charge storage node decrease in high-density dynamic random access memories (DRAMs), TiO2 and BaTiO3 are very promising candidates for applications with exhibiting higher dielectric constant, high refractive index and high chemical stability. The growth of TiO2 and BaTiO3 thin films on various substrates i.e. (100) silicon、(100) GaAs、(100) InP and (100) MgO are studied by MOCVD using Ti(i-OC3H7)4, Ba(DPM)2, N2O and O2 as precursors. The growth was performed in a cold wall horizontal system in the temperature range of 280~750℃. The growth rates and structure of TiO2 and BaTiO3 films are affected by the substrate temperature and reactor pressure, etc. The phase transition properties of TiO2 were studied via X-ray diffraction measurements. X-ray diffraction examination shows that phase transition of TiO2 films are at the same temperature of 450 oC on different substrates. Phase-pure rutile is obtained down to 450℃ on InP (100) and GaAs (100), while phase-pure anatase is obtained up to 450℃on MgO (100). The optical and electrical properties are associated with the film structures. TiO2 single phase films with rutile (110) orientation were successfully grown on InP (100) at 500℃. In-plane epitaxial relationship of anatase TiO2 (100) // MgO (100) is present between 300℃ and 375℃. In addition, the influences of substrate temperature and oxidizer on the structural and electrical properties of BaTiO3 films will be also studied. However, TiO2 and BaTiO3 films have columnar structures acted the paths of leakage current resulting low dielectric constant. We use thermal annealing to improve the quality of TiO2 with respect to leakage current density and dielectric constant. Dielectric constants of annealed TiO2 films were as high as 110.08. Leakage current density reduced to 5 × 10-5 A/cm2. In the future, to improve the crystal structure of the films is the goal in our study.


目次 Table of Contents
Acknowledgment................................................................3
List of figures..............................................................12
List of tables...............................................................17
Abstract.....................................................................18
1.Introduction...............................................................20
1-1 Developments in DRAM.....................................................20
1-2 Promising candidates of high dielectric constant materials for high-density DRAM.........................................................................21
1-3 Comparison of deposition methods of BaTiO3...............................23
1-4 Advantages of MOCVD......................................................24
2.Experiments................................................................26
2-1 Growth system of MOCVD...................................................26
2-2 Properties of metalorganic precursors....................................27
2-2-1 Ti metalorganic precursor..............................................27
2-2-2 Ba metalorganic precursor..............................................28
2-3 Growth procedures........................................................28
2-3-1 Si wafer cleaning procedures...........................................28
2-3-2 GaAs wafer cleaning procedures.........................................29
2-3-3 InP wafer cleaning procedures..........................................30
2-3-4 MgO wafer cleaning procedures..........................................30
2-3-5 Preparations of TiO2 and BaTiO3 thin films.............................31
2-4 Characterizations........................................................31
2-4-1 Physical properties....................................................31
2-4-2 Chemical properties....................................................32
2-4-3 Electrical properties..................................................32
3.Results and Discussion.....................................................34
3-1 Structural and electrical properties of TiO2 on GaAs.....................34
3-1-1 Thickness and growth rate of TiO2 on GaAs as a function of substrate temperature..................................................................34
3-1-2 Refractive index of TiO2 on GaAs as a function of substrate temperature..................................................................36
3-1-3 X-ray diffraction patterns of TiO2 on GaAs as a function of substrate temperature..................................................................36
3-1-4 Chemical analyses of TiO2 on GaAs as a function of substrate temperature..................................................................37
3-1-5 Surface morphologies of TiO2 on GaAs as a function of substrate temperature..................................................................37
3-1-6 Dielectric constant and leakage current density of TiO2 on GaAs as a function of substrate temperature............................................38
3-2 Structural and electrical properties of TiO2 on InP......................39
3-2-1 Thickness and growth rate of TiO2 on InP as a function of substrate temperature..................................................................39
3-2-2 Refractive index of TiO2 on InP as a function of substrate temperature..................................................................40
3-2-3 X-ray diffraction patterns of TiO2 on InP as a function of substrate temperature..................................................................40
3-2-4 Chemical analyses of TiO2 on InP as a function of substrate temperature..................................................................42
3-2-5 Surface morphologies of TiO2 on InP as a function of substrate temperature..................................................................42
3-2-6 Leakage current density of TiO2 on InP as a function of substrate temperature..................................................................43
3-3 Structural and electrical properties of TiO2 on MgO......................44
3-3-1 Thickness and growth rate of TiO2 on MgO as a function of substrate temperature..................................................................44
3-3-2 Refractive index of TiO2 on MgO as a function of substrate temperature..................................................................46
3-3-3 X-ray diffraction patterns of TiO2 on MgO as a function of substrate temperature..................................................................46
3-3-4 Chemical analyses of TiO2 on MgO as a function of substrate temperature..................................................................47
3-3-5 Surface morphologies of TiO2 on MgO as a function of substrate temperature..................................................................48
3-3-6 Dielectric constant and leakage current density of TiO2 on MgO as a function of substrate temperature............................................49
3-4 Effects of heat treatments on TiO2 thin films............................50
3-4-1 Structural and electrical properties of TiO2 thin films under different heat treatments..............................................................50
3-4-2 X-ray diffraction patterns of TiO2 thin films under different heat treatments...................................................................53
3-4-3 Chemical analyses of TiO2 thin films under different heat treatments...................................................................54
3-4-4 Surface morphologies of TiO2 thin films under different heat treatments...................................................................55
3-5 Structural and electrical properties of BaTiO3 on Si in O2...............56
3-5-1 Thickness and growth rate of BaTiO3 on Si in O2 as a function of substrate temperature........................................................56
3-5-2 X-ray diffraction patterns of BaTiO3 on Si in O2 as a function of substrate temperature........................................................57
3-5-3 Chemical analyses of MoO3..............................................58
3-5-4 Surface morphologies of BaTiO3 on Si in O2 as a function of substrate temperature..................................................................58
3-5-5 Dielectric constant and leakage current density of BaTiO3 on Si in O2 as a function of substrate temperature..........................................59
3-6 Structural and electrical properties of BaTiO3 on Si in N2O..............58
3-6-1 Thickness and growth rate of BaTiO3 on Si in N2O as a function of substrate temperature........................................................60
3-6-2 Refractive index of BaTiO3 on Si in N2O as a function of substrate temperature..................................................................61
3-6-3 Surface morphologies of BaTiO3 on Si in N2O as a function of substrate temperature..................................................................61
3-6-4 X-ray diffraction patterns of BaTiO3 on Si in N2O as a function of substrate temperature........................................................62
3-6-5 Dielectric constant and leakage current density of BaTiO3 on Si in N2O as a function of substrate temperature..........................................63
3-7 Structural and electrical properties of BaTiO3 on MgO....................64
3-7-1 Thickness and growth rate of BaTiO3 on MgO as a function of substrate temperature..................................................................64
3-7-2 Refractive index of BaTiO3 on MgO in N2O as a function of substrate temperature..................................................................65
3-7-3 Surface morphologies of BaTiO3 on MgO in N2O as a function of substrate temperature..................................................................65
3-7-4 X-ray diffraction patterns of BaTiO3 on MgO in N2O as a function of substrate temperature........................................................66
4.Conclusions................................................................67
References..................................................................116






參考文獻 References
[1] K. Kim, C. G. Hwang and J. G. Lee, “DRAM Technology Perspective for Gigabit Era,” IEEE Trans. Electron Devices, vol. 45, pp. 598-608, 1998.
[2] Q. X. Jia, L. H. Chang and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp. 264-269, 1995.
[3] S. Yamamichi, A. Yamamichi, D. park, T. J. King and C. Hu, “Impact of time dependent dielectric breakdown and stress-induced leakage current on the reliability of high dielectric constant (Ba, Sr)TiO3 thin-film capacitors for Gbit-scale DRAM’s,” IEEE Transactions on Electron Devices, vol. 46, no. 2, pp. 342-347, 1999.
[4] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low-pressure chemical-vapor-deposition”, J. Electrochem. Soc., vol 140, Iss. 6, pp. 1617-1625, 1993.
[5] Y. H. Lee, K. K. Chan and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, Iss 3, pp. 596-601, 1995.
[6] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation at high temperature and their application to capacitor dielectrics,” Jpn. J. Appl. Phys. Part 2-Letts, vol. 33, Iss 9A, pp. L1248-L1250, 1994.
[7] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 films with a high magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition,” Appl. Surface. Science., vol.90, Iss. 1, pp. 75-80, 1995.
[8] K. Koyama, T. Sakuma, S. Yamamichi, Watanabe and H. Aoki, “A stacked capacitor with (BaxSr1-x)TiO3 for 256M DRAM,” in IEDM Tech. Dig., pp. 823-826, 1991,
[9] E. Tokumitsu, Ryo-ichi Nakamura and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric insulator-semiconductor
(MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 160-162, 1997.
[10] K. J. Sladek and H. M. Herron. Ind. Enr. Chem. Prod. Res. Develop.
,11(1972)92.
[11] M. A. Butler and D. S. Ginley. J. Mat. Sci., 15(1980)19.
[12] T. Carlson and G. L. Griffin, J. Phys. Chem., 90(1986)5896.
[13] G. Q. Lo, D. L. kwong and S. Lee, “Reliability characteristics of metal-oxide-semiconductor capacitors with chemical vapor deposited Ta2O5 gate dielectrics,” Appl. phys. Lett., vol. 62, no. 9, pp. 973-975, 1993.
[14] Y. S. Yoon, W. N. Kang, H. S. Shin, S.S.Yom, T. W. Kim, Jong Yong Lee, D.J. Choi and S-S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” in J. Appl. Phys., vol. 73, no. 3, pp. 1547-1549, 1993.
[15] C. H. Lee and S. J. Park, “Preparation of ferroelectric BaTiO3 thin films by metal organic chemical vapour deposition,” Journal of Materials Science: Materials in Electronics 1, pp. 219-224, 1990.
[16] In-Tae Kim, Jin Wook Jang, Hyuk-Joon Youn, Chang Hoon Kim and Kug Sun Hong, “180o ferroelectric domains in polycrystalline BaTiO3 thin films,” Appl. Phys. Lett., vol. 72, no. 3, pp. 308-310, 1998.
[17] K. A. Vorotilov, E. V. Orlova and V. I. Petrovsky, “Sol-gel TiO2 films on silicon substrates”, Thin solid films , vol 207, Iss 1-2, pp. 180-184 , 1992.
[18] D. Guerin and S. I. Shah, “Reactive sputtering of titanium-oxide thin films”, J. Vac. Sci. Technol. A, vol 15, Iss 3, pp. 712-715, 1997.
[19] H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films”, Appl. Phys. Lett. , vol 68, Iss 21, pp. 2965-2967,1996.
[20] N. Rausch and E. P. Burte, “Thin TiO2 films prepared by low-pressure chemical vapor-deposition”, J. Ectrochem. Soc. , Vol 140, Iss 1, pp 145-149,1993.
[21] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films”, Thin solid films, vol 198, Iss 1-2, pp. 199-205, 1991.
[22] H. S. Kim, D. C. Gilmer, S. A. Campbell and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett. , vol 69, Iss 25, pp 3860-3862, 1996.
[23] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics”, IEEE Tran. Electron Devices, vol 44, Iss 1, pp. 104-109, 1997.
[24] A. M. Glass, “ Optical-materials”, Science, vol 235, Iss 4792, pp 1003-1009, 1987.
[25] H. B. Sharma and H. N. K. Sarma, “Electrical properties of sol-gel processed barium titanate films,” Thin Solid Films, vol. 330, Iss. 2, pp. 178-182, 1998.
[26] T. Yoko, K. Kamiya, and K. Tanaka, “Preparation of multiple oxide BaTiO3 fibers by sol-gel Method,” J. Materials. Soc., vol. 25, Iss. 9, pp. 3922-3929, 1990.
[27] K. Iijima, T. Terashima, K. Yamamoto, K. Hirata and Y. Bando, “Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation”, Appl. Phys. Lett. Vol. 56, No. 6, pp.527-529, 1990.
[28] Y. Yoneda, H. Kasatani,H. Terauchi,Y. Yoshihiko,T. Terashima,Y. Bando, “Ferroelectric phase transition in BaTiO3 films,” J. Crystal Growth, vol. 150, pp. 1090-1096, 1995.
[29] Q. X. Jia, Z. Q. Shi, and W. A. Anderson, “BaTiO3 thin film capacitors deposited by R.F. magnetron sputtering,” Thin. Solid Films., vol. 209, pp. 230-239, 1992.
[30] S. Kim, S. Hishita, Y. M. Kang, and S. Baik, “Structural characterization of epitaxial BaTiO3 thin films grown by sputter deposition on MgO (100),” J. Appl. Phys., vol. 78, Iss. 9, pp. 5604-5608, 1995.
[31] Q. X. Jia, J. L. Smith, L. H. Chang, and W. A. Anderson, “Characteristics of BaTiO3 thin film on Si deposited by RF magnetron sputtering,” Philosophical. Magazine B., vol. 77, Iss. 1, pp. 163-175, 1998.
[32] K. Nashimoto, D. K. Fork and T. H. Geballe, “Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO3 thin films by pulsed Laser deposition, ” Appl. Phys. Lett., vol. 60, No.10, pp.1199-1201,1995.
[33] B. D. Qu, M. Evstigneev, D. J. Johnson, and R. H. Prince, “Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed Laser deposition, ” Appl. Phys. Lett., vol. 72, No. 11, pp. 1394-1396,1998.
[34] S. Tsunekawa, J. Ichikawa, Y. Yoneda, and T. Ozaki, “AFM observation of 180 degrees domains in BaTiO3 crystals grown by MBE,” J. Korean. Phys. Soc., vol. 32, Iss. S, pp. 777-779, 1998.
[35] R. A. Mckee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, barium titanate on silicon,” Appl. Phys. Letts., vol. 59, Iss. 7, pp. 782-784, 1991.
[36] L. A. Wills, B. W. Wessels, D. S. Richeson, and T. J. Marks, “Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition,” Appl. Phys. Letts., vol 60, Iss. 1, pp.41-43, 1992.
[37] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 films with a high-magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical-vapor-deposition,” Appl. Surface. Science., vol.90, Iss. 1, pp. 75-80, 1995.
[38] J. Zhao, V. Fuflyigin, F. V. Wang, P. E. Norris, L. Bouthilette, and C. Woods, “Epitaxial electrooptical BaTiO3 films by single-source metal-organic chemical vapor deposition,” J. Materials. Chemistry., vol. 7, Iss. 6, pp. 933-936, 1997.
[39] G. Stringfellow, “Organometallic vapor phase epitaxy: Theory and Practice, Academic Press, Boston, 1989.
[40] C. H. Chen ,E. M. Kelder ,”Electrostatic solspray deposition (ESSD) and characterization of nanostructured TiO2 thin films,” Thin Solid Films ,342, 35-41,1999.
[41] Byung-Chang Kang, Soon-Bo Lee, “Growth of TiO2 thin films on Si (100) substrates using single molecular precursors by metal organic chemical vapor deposition”, Surface and Coatings technology, 131, 88-92, 2000.
[42] Z. Nami, O. Misman, “Effect of growth parameters on TiO2 thin films deposited using MOCVD”, Journal of Crystal Growth, 179, 522-538, 1997.
[43] Ch. Buchal, L. Beckers, “Epitaxial BaTiO3 thin films on MgO”, Material Science and Engineering, B56, 234-238, 1998.




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.121.131
論文開放下載的時間是 校外不公開

Your IP address is 13.58.121.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code