Responsive image
博碩士論文 etd-0706103-142148 詳細資訊
Title page for etd-0706103-142148
論文名稱
Title
以光參數振盪器對牙齒切片行諧頻顯微術觀測
Harmonic generation microscopy with an optical parametric oscillator on dental section
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-21
繳交日期
Date of Submission
2003-07-06
關鍵字
Keywords
二倍頻、三倍頻、諧頻顯微術、琺瑯質、光參數振盪雷射、象牙質
harmonic generation microscopy, Dentin, optical parametric oscillator(OPO), second harmonic generation(SHG), third harmonic generation(THG), Enamel
統計
Statistics
本論文已被瀏覽 5673 次,被下載 4010
The thesis/dissertation has been browsed 5673 times, has been downloaded 4010 times.
中文摘要
我們已成功地架設出一套兼具反射式和穿透式的雷射掃描顯微系統並以之對牙齒等硬體組織取得獨特的影像。在本論文中,我們描述如何以光參數振盪雷射產生穩定且可調的近紅外光源(1.1~1.3μm)及穿透式雷射掃描顯微系統,對具有較高折射係數(n~1.68)與高散射特性的牙齒組織進行諧頻顯微觀測。使用的激發光源波長主要為1260 nm,其相對應的二倍頻和三倍頻波長分別為630nm及420nm,均在可見光範圍。我們利用樣品本身非線性光學的特性產生諧頻訊號,拍攝到牙齒組織高解析度的3D結構影像。三倍頻影像清晰的顯示琺瑯質的棱柱結構及象牙質的細管結構,而二倍頻影像清楚地顯示象牙質的膠原蛋白分佈。並經由電腦圖像疊合二倍頻與三倍頻影像,清楚顯示出其結構與組織相對的分佈位置。這些影像皆可透過三維影像軟體處理並製作出立體影像,建構出牙齒的三維立體結構。
Abstract
In this study we demonstrate the use of third harmonic (TH) and second harmonic (SH) generation in imaging dental sections. Teeth are the hardest and most indestructible part in human body. The TH and SH greatly facilitate observation of porous structures and collagen within the dental sections, respectively.
Strong SH has been found on various biological specimens, such as collagen, potato starch, and skeletal muscles. These materials all possess periodical nano-structures that are often referred as (nonlinear) bio-photonic structures. In particular, collagen is an extra-cellular structural protein and is a major component of bone, cartilage, skin, and other tissues. Collagen fibrils have a triple-helical structure and it is believed that this structure enables collagen to generate SH signal from a wide range of wavelengths in the infrared region. For comparison, microtubule structures within dentin, due to its large index mismatch with surrounding, can be clearly seen with THG imaging. The THG also facilitate observation of prismatic structures in enamel.
The successful construction of a multi-photon laser scanning microscope that can operate in both reflection and transmission modes is the key for this study. A femtosecond, sync-pumped optical parametric oscillator (OPO) is used to generate second and third harmonics from dental sections. Dental sections have large index of refraction(n~1.68)and scatter visible light severely. The employment of excitation wavelength at 1260 nm greatly reduces scattering and absorption within the sample. Its corresponding SH and TH wavelengths are at 630 nm and 420 nm, respectively. Additionally, 3-D structural views are also reconstructed from the optically sectioned images by the use of specialized 3D image processing software.
目次 Table of Contents
中文摘要 四
英文摘要 五
目 錄 六
表目錄 七
圖目錄 八

第一章 緒言 01

第二章 諧頻理論與樣品介紹 07
第一節 諧頻理論 07
第二節 樣品介紹 11

第三章 實驗架設與實驗方法 19
第一節 實驗架設與實驗方法 19
第二節 光參數震盪雷射 24

第四章 實驗結果與討論 31
第一節 THG和SHG影像 31
第二節 光譜與極化相關 41
第三節 實驗結果之討論 43

第五章 總結與未來展望 46

附錄 Mathematica模擬程式 47
參考文獻 References
1.1 P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, pp. 3341-3349 (1999).
1.2 L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by silmultaneous second harmonic generation and two-photon microscopy,” Opt. Lett. 25, pp. 320-322 (2000).
1.3 M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner, “Opt. Lett. 27, pp. 1324-1326 (2002).
1.4 Y. Barad, H. Eisenberg, M. Horowitz and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, pp. 24-26 (1997).
1.5 J. A. Squier, M. Müller, G. J. Brakenhoff and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Exp. 3, pp. 315-324 (1998).
1.6 D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Exp. 5, pp. 169-175 (1999).
1.7 A. Zumbusch, G.R. Holtom, S.X. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, pp. 4142 -4145 (1999).
1.8 G. D. Reid and K. Wynne, ”Ultrast Laser Technology and Spectroscopy,” John Wiley & Sons Ltd, Chichester(2000).
1.9 M. H. Niemz, T. Hoppeler, and J. F. Bille, “ Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses,” Lasers Light Ophthalmol. 5, pp.145-152(1933).
1.10 T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, pp. 23-31(1996).
1.11 B. -M. Kim, M. D. Feit, A. M. Rubenchik, B. M. Mammini, and L. B. Da Silva, ”Optical feedback signal for ultrashort laser pulase ablation of tissure,” Appl. Surf. Sci. 127-129, pp. 857-862(1998).
1.12 M. D. Feit, A. M. Rubenchik, B. -M. Kim, L. B. Da Silva, and M. D. Perry, “Physical characterization of ultrashort laser pulse drilling of biological tissure,” Appl. Surf. Sci. 127-129, pp. 869-874(1998).
1.13 R. Boyd, Nonlinear Optics, (Academic, New York, 1992).
1.14 J. M. Schins, T. Schrama, J. Squier, G. J. Brakenhoff, and M. Müller, “Determination of material properties by use of third-harmonic generation microscopy,” Opt. Soc. Am. B 19, pp. 1627-1634(2002).
1.15 C.-H. Sun, S.-W. Chu, S.-P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 70, pp. 2331-2333 (2000).
1.16 D. Yelin Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic generation microscopy,” Appl. Phys. Lett. 74, pp. 3107-3109 (1999).
1.17 Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, pp. 519-52 (1989).
1.18 Thomas Y. F. Tsang, “Optical third-generation at interface,” Phys. Rev. A 52, pp. 4116-4125(1995).
1.19 I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity: optical second-harmonic generation, cross-beam summation, and small-angle scattering in rat-tail tendon,” Bio-phys. J. 50, pp. 693-712(1986).
1.20 G. B. Altshuler, N. R. Bbelashenkov, G. A. Martsinovski, and A. A. Solounin, “Nonlinear transmission and second-harmonic generation in dentin in the field of ultrashort Nd-laserpulse,” in Advanced Laser Density, G. B. Altshuler, R. J. Blankkenau, and H. A. Wigdor, eds., Proc. SPIE 1984, pp. 6-10(1995).
1.21 V. Hovanessian and A. Lalayan, “Second-harmonic generation in biofiber-containing tissue,” in Proceedings of the International Conference on Laser ’96 (Society for Optical and Quantum Electronics, Mclean, Va., 1996), pp. 107-110.
1.22 Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, “Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pluses,” Appl. Opt. 35, pp. 6810-6813(1996).
1.23 高甫仁、王雍舜,雙光子共膠掃描顯微鏡簡介,光訊,第76期,pp.14-19 (1999)。
1.24 G. I. T., “Imaging & Microscopy,” 4, pp. 24(2002).
1.25 A. R. Ten Cate, Oral Histology 5th edition, (Mosby, St. Louis, 1998).
2.1 Echt, Optics 2nd edition, (Addision-Wesley, America,1990).
2.2 Amnon Yariv, Optical Electronics in Modern Communication 5th edition, (Oxford, New Yark,1997).
2.3 R. W. Boyd, Nonlinear Optics.(Academic Press, Boston, 1992).
2.4 Y. Barad, H. Eisenberg, M. Horowitz and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, pp. 24-26 (1997).
2.5 M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” Journal of Microscopy 191, pp. 266-274(1998)
2.6 T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, pp. 4116-4125(1995).
2.7 J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. express 3, pp. 315-324(1998).
2.8 D. Yelin, Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. express 5, pp. 169-175(1999).
2.9 J. M. Schins, T. Schrama, J. Squier, G. J. Brakenhoff, and M. Müller, “Determination of material properties by use of third-harmonic generation microscopy,” Opt. Soc. Am. B 19, pp. 1627-1634(2002).
2.10 A. R. Ten Cate, Oral Histology 5th edition, (Mosby, St. Louis, 1998).
2.11 B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of The Cell 2nd edition, (Garland Publishing, New Yark,1989).
3.1 G. Cox, Biological confocal microscopy , materialstoday (2002).
3.2 C. C. Wang and G. W. Racette, Appl. Phys. Lett. 6, pp. 169(1965)
3.3 J. A. Giordamaine and R. C. Miller, “Tunable coherence parametric oscillator in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14, pp. 973-976(1965)
3.4 Amnon Yariv, “Optical Electronics in Modern Communication,” Fifth edition.
3.5 高甫仁,光參數震盪雷射簡介,物理雙月16卷,pp.445-452 (1994)。
3.6 D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, pp. 1728-1730(1989).
3.7 E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, pp. 136-138 (1990).
3.8 W. S. Pelouch, P. E. Powers, and C. L. Tang, in Digest of Conference on Laser and Electra-Optics (Optical Society of America, Washington, D. C., 1992) paper CPD 14, pp. 27, W. S. Pelouch, P. E. Powers, C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, pp. 1070-1072(1992).
3.9 G. Mak, Q. Fu, and H. M. van Driel, in Digest of Conference on Laser and Electra-Optics (Optical Society of America, Washington, D. C., 1992) paper CWD 1, pp. 236, G. Mak, Q. Fu, and H. M. van Driel, in Digest of Ultrafast Phenomena VIII (Ecole National Supperieure Techniqueet Advance, Paris, 1992) pp. 394.
3.10 D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,”
Opt. Lett. 17, pp. 42-44(1991).
3.11 Bob Proctor, and Frank W. Wise, “ Quartz prism sequence for reduction of cubic phase in a mode-locked Ti:Al2O3 laser,” Opt. Lett. 17, pp. 1295-1297(1992).
3.12 OPO Basic Ring Manual, Coherent.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code