Responsive image
博碩士論文 etd-0706104-190315 詳細資訊
Title page for etd-0706104-190315
論文名稱
Title
AZ31 鎂合金之管材擠型與液壓鼓脹成形研發
Tube extrusion and hydroforming of AZ31 Mg alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
269
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-30
繳交日期
Date of Submission
2004-07-06
關鍵字
Keywords
液壓成形、超塑性、穿孔心軸模具、晶界滑移、管狀擠型、AZ31鎂合金
grain boundary sliding, superplasticity, AZ31 Mg alloy, tube extrusion, hydroforming
統計
Statistics
本論文已被瀏覽 5698 次,被下載 815
The thesis/dissertation has been browsed 5698 times, has been downloaded 815 times.
中文摘要
本研究以自行研發的穿孔心軸模具組,藉由KCAEP-350E簡單單道擠型機,擠型比15.4,研發無縫、無導孔的AZ31管材。不但操作簡單且可巨幅節省模具的設計費,同時更能符合工業界所希求的『一次加工』生產作業程序的目標,來達到加工成本的節流。
本實驗進行四種不同溫度250、300、350及400 oC之管材擠製,並以四種不同擠型速率6x10-3 s-1、1.3 x10-2 s-1、5.4x10-2s-1、及1.1x100s-1來探討其差異,除機械性質的測試外,還有進行室溫液壓鼓脹成形實驗。結果得知,不同擠型參數所擠製的管材,均可將胚料的大晶粒75
Abstract
The microstructures and mechanical properties of the AZ31 Mg tubes fabricated by one-pass forward piercing tube extrusion operated at 250-400oC and 10-2-100 s-1 are examined. The grain size is refined from the initial ~75
目次 Table of Contents
目錄…………………………………………………………………………………….I
表索引……………………………………………………………………………………...IV
圖索引……………………………………………………………………………….……...V論文摘要……………………………………………..……………………………………..Ⅶ第一章 研究背景與方向……………………………………………………………………1
1.1 輕量鎂基合金…………………….…………………………………………………...1
1.1.1 鎂合金的特性………………………………………………………………….1
1.1.2 鎂合金的發展與應用……….………………………………………………...3
1.2 鎂合金擠型概述……………………………………………………………...6
1.3 管材擠型………………………………………………………………………………9
1.3.1 無縫圓形管材擠型……………………………………….……………………9
1.3.2 無縫圓形管材熱加工……..…………………….…………………….………9
1.4 管材液壓成形……………………………………………………………..…………14
1.4.1 管材液壓成形應用……………………..……………………………….……17
1.4.2 管材液壓成形技術簡介……..………………………………………………19
1.5 超塑性材料的基本性質……………..………………………………………………20
1.5.1 細晶粒超塑性……….………………………………………………………..23
1.5.2 內應力超塑性………………………………………………………………...25
1.5.3 高應變速率超塑性或低溫超塑性……………..…………………………….26
1.5.4 其它機構………………………………….…………………………………..27
1.6 鎂合金超塑性之研究與發展………………………………………………………..27
1.6.1 晶粒尺寸之影響……………………………………….……………………..28
1.6.2 晶粒細化之加工方式………..…………..…………………………………..29
1.6.2.1 粉末法………..…………………………………………………….32
1.6.2.2 快速凝固法……..………………………………………………….33
1.6.2.3 壓延法……………..……………………………...………………..33
1.6.2.4 擠型法……………………………………………………..………..34
1.6.2.5 等徑轉角擠製法………….………………………………………..35
1.6.2.6 雙重擠型法與往復式擠型法……………………….………………36
1.6.3 鎂合金的拉伸性質……….………………………………………………….37
1.7 X光繞射織構分析………………………………………………………….………..38
1.8 研究動機………………………………………………………………………….….38
第二章 實驗方法……………………………………………………………..………….41
2.1 實驗材料……………………………………………………………………..……….41
2.2 材料加工製程……………..………………………………………………………….41
2.2.1 管材擠型模具設計與製作……………………………………..…………….41
2.2.2 管材擠型…………..………………………………………………………….43
2.3 機械性質測試………………………………………………………….…………….45
2.3.1 微硬度試驗…………………………………………………………………..45
2.3.2 超塑性測試…………………………………….……………………………..45
2.3.3 管材液壓成形模具設計與製作……………………………..……………….46
2.3.4 管材退火處理………………………….…………………………………….50
2.3.5 電化學網格蝕刻……………………….…………………………………….50
2.3.6 管材壁厚量測………………………….…………………………………….51
2.3.7 管材液壓成形測試……………………………..…………………………….52
2.4 微觀組織觀察………………………………………………………………………..53
2.4.1 晶粒變化……………………………………….…………………………….53
2.4.2 掃瞄式電子顯微鏡之觀察………………………..………………………….54
2.4.3 X光繞射分析…………………………………………..…………………….54
第三章 實驗結果………………………..……………………………...………………….55
3.1 AZ31管狀擠型………………….……………………….…………………………..55
3.2 AZ31管狀擠型金屬流………………..……………………………….……………..56
3.3 實驗結果編號定義…………………………………….…………………………….57
3.4 AZ31擠製成管材之應變速率計算…………….………………………..………….57
3.5 AZ31擠製成管材之微觀組織……………………………………………………….58
3.6 機械性質測試結果…………………………………………………………………...59
3.6.1 微硬度試驗……………………….………………………………………….59
3.6.2 室溫的拉伸性質…………………………………………………………….60
3.6.3 超塑性測試…………………………………………………………………..61
3.6.3.1 低溫200 oC之拉伸測試特性………………….…………………..61
3.6.3.2 中溫300 oC之超塑性行為…………………….…………………..63
3.6.3.3 高溫400 oC之超塑性行為……………………………….………..65
3.6.4 管材液壓成形測試…………………………….……………………………..67
3.6.5 退火試片的拉伸測試………………….…………………………………….70
3.6.6 退火的試片壓平製作與拉伸測試…………………………………………..71
3.7 X光繞射分析結果………………………………………………………….………..72
3.8 室溫拉伸試片破斷面之觀察………………………………..………………………74
3.9 室溫液壓鼓脹破裂後破斷面之觀察….………..…………………………………....74
第四章 分析與討論……………………………………………………………………….76
4.1 擠型模具半模角的影響…………………………………………………..………….76
4.2 AZ31管狀擠型金屬流之分析………………………………………….…………….77
4.3 AZ31管材試片晶粒與棒材、片材之差異………………………………….……….78
4.4 影響棒材、片材、管材之應變速率探討…….………………………………..………79
4.5 Zener-Holloman 參數與晶粒大小之關係……….………………………………….80
4.6 AZ31管材試片變形機構分析……………………………………………………….82
4.7 AZ31管材試片應變速率敏感係數計算…………………………………………….83
4.8 超塑性行為之差異……………………………………………………….………….84
4.9 AZ31管材試片機械性質測試結果………………………………………………….86
4.10 管材液壓行為之探討………………………………………………….…………….88
4.11 織構造成的液壓成形限制探討……………………………………………………..91
4.12 Schmid factor判讀…………………………………………………………………..92
第五章 結論……………………………………………………………………………...95
參考文獻………………………………………………………………………………98-110
表…………………………………………………………………………….……….111-137
圖…………………………………………………………….………………………...138-268
附錄…………………………………………………………………………………………269
圖A1擠製方向速度分量之分析,
參考文獻 References
1. I. J. Polmear, “Magnesium Alloys and Application”, Materials Science and Technology, 10 (1994), p. 1.
2. R. W. Cahn, P. Hasssen, and E. J. Kramer, “Structure and Properties of Nonferrous Alloys”, Materials Science and Technology, 8 (1996), p. 131.
3. M. M. Avedesian and H. Baker, ASM Specialty Handbook—Magnesium and Magnesium Alloys, ASM Metals Park, OH (1999), p. 13.
4. 李信委,“AZ31B 鎂合金室溫至500oC之拉伸性質與其變形組織探討”,國立成功大學材料科學及工程學系,碩士論文,2002。
5. 戴國政,郭晉全,詹德泉,“鎂合金高溫性質之基礎研究”,中國材料科學學會論文集,2001。
6. 張志坤,黃庭彬,陳復國,“鎂合金AZ31板材之沖壓製程”,工業材料雜誌,186期,91年6月,p. 99。
7. 葉圳轍,“鎂合金成型產業現況”,工業材料雜誌,186期,2002年6月,p. 82。]
8. T. Lyman, H. E. Boyer, P. M. Unterweiser, J. E. Foster, J. P. Hontas, and H. Lawton, “Magnesium and Magnesium Alloys”, Metals Handbook, 1, Properties and Selection of Metals, 9th.(1977), p. 1067.
9. 陳盈志,吳炳興,廖芳俊,“AZ31B鎂合金銲補制製程的探討”,工業材料雜誌,186期,91年6月,p. 106。
10. Y. Kojima, “Project of Platform Science and Technology for Advanced Magnesium Alloys”, Materials Transactions, 42, 7 (2001), p. 7.
11. 馬寧元,“鎂於電子工業之應用”,中華民國鍛造協會會刊,第10卷,第3期,90年9月,p. 28。
12. S. F. Su, J. C. Huang, H. K. Lin, and N. J. Ho, “Electron-Beam Welding Behavior in Mg-Al-Based Alloys”,Metallurgical and Materials Transactions A, 33A (2002), P. 1461.
13. 高永洲,“鎂合金鍛造技術簡介”,中華民國鍛造協會會刊,第8卷,第2期,88年6月,p. 18。
14. 曾寶貞,“壓鑄用鎂合金的特性與動向”工業材料雜誌,156期,1999年12月,p. 153.
15. 王建義,“鎂合金之環保化”,工業材料雜誌,186期,2002年6月,p.125。
16. H. K. Lin, S. F. Su, and J. C. Huang, “On Superplasticity and Welding Behavior in Mg-Al-Zn Base Alloys”,中國材料科學學會論文集,2001。
17. 曾義豐,“鎂合金AZ31B的脈衝Nd: YAG雷射疊焊接技術開發”,中國機械工程學會,第十七屆全國學術研討會,89年。
18. 蔡幸甫,“筆記型電腦應用鎂合金的幾個重大理由”,工業材料雜誌,154期,88年10月,p. 116。
19. H Zenner and F. Renner, “International Material Behavior of Magnesium Die Castings and Extrusions”, 24 (2002), p. 1255.
20. 林鉉凱,“析出型AZ91低溫超塑性之研究”,國立中山大學材料科學與工程研究所,碩士論文,2001。
21. M. C. Kuo, J. C. Huang, M. Chen, and M. H. Jen,中國材料科學學會論文集,2002。
22. G. V. Raynor, “The Physical Metallurgy of Magnesium and Its Alloys”, Pergamon Press, London, (1957), p. 1.
23. N. Ogawa, M. Shiomi, and K. Osakada, “Forming Limit of Magnesium Alloy at Elevated Temperatures for Precision forging”, International Journal of Machine Tools & Manufacture, 42 (2002), p. 607.
24. I. J. Polmear, “Recent Developments in Light Alloys”, Materials Transactions, JIM, 37 1 (1996), p. 12.
25. 蘇勢方,“鎂基材料電子束和焊接冶金特性與織構研究”,國立中山大學材料科學與工程研究所,碩士論文,2001。
26. A. A. Luo, “Magnesium: Current and Potential Automative Applications”, JOM, (2002) 2, p. 42.
27. 陳錦修,“鎂合金在汽車工業之應用”,工業材料雜誌,186期,2002年6月,p. 148。
28. 林東毅,魏振仁,林義翔,“鎂合金時效行為之研究”,中國材料科學學會論文集,2001。
29. 王建義,“鎂合金板材之壓型加工技術”,工業材料雜誌,170期,2001年2月,p.132。
30. M. H. Yoo, S. R. Agnew, J. R. Morris, and K. M. Ho, “Non-Basal Slip System in HCP Metals and Alloys: Source Mechanisms”, Materials Science and Engineering, 319-321 (2001), p. 87.
31. 范元昌、蘇健忠、翁震灼、陳俊沐,“鋁、鎂合金半固態觸變鑄造技術”,工業材料雜誌,186期,2002年6月,p. 131。
32. 王文寬,“鎂板材的製造方法”,工業材料雜誌,192期,91年12月,p. 125。
33. 邱垂泓,“鎂板的應用及其製造方法”,工業材料雜誌,190期,91年10月,p. 164。
34. C. Y. Wu and Y. C. Hsu, “The Influence of Die Shape on The Flow Deformation of Extrusion Forging”, Journal of Materials Processing Technology, 124 (2002), p. 67.
35. G.. E. Dieter and D. Bacon, “Mechanical Metallurgy”, SI Metric Edition, (2001), p. 616.
36. S. Lee, Y. H. Chen, and J. Y. Wang, “Isothermal Sheet Formability of Magnesium Alloy AZ31 and AZ61”, Journal of Materials Processing Technology, 124 (2002), p. 19.
37. 施詠堯,郭敏郎,曹紀元,“噴覆成型散熱片6063鋁合金擠型性質研究”,中國材料科學學會論文集,2001。
38. 賴詩文,“鋁合金擠型製程技術”,工業材料雜誌,134期,87年2月,p.101。
39. 廖招順,“園管熱間擠製加工研究”,國立台灣工業技術學院,機械工程技術研究所,碩士論文,1995。
40. Y. M. Hwang and M. T. Yang, “Study of Hydrostatic Extrusion Processes with Extra-High Extrusion Ratio”, Journal of Key Engineering Materials, 233-236 (2003), p. 311.
41. S. Kalpakjian, “Bulk Deformation Processes”, Manufacturing Processes for Engineering Materials (Third Edition), Addison-Wesley Publishing Company, Menlo Park, California, USA, (1997), p. 295.
42. 李少濠,“靜液壓擠壓成形技術之發展現況及其應用介紹”,中華民國鍛造協會會刊,第10卷,第1期,90年4月,p. 18。
43. G.. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., (1988), p. 633.
44. K. Laue and H. Stenger, “Extrusion Processes”, Extrusion Processes, Machinery, Tooling, (1989), p. 63.
45. T. Murakami, J. X. Xie, H. Takahashi, K. Ikeda, and K. I. Takaku, “Forming of A7475 and A5056 Pipes by Hot Multi-Billet Extrusion: Hollow Section Forming by Multi-Billet Extrusion”, J. of JSTP Vol. 33, No. 380, Sep., (1992), p. 1045.
46. S. H. Hsiang and C. S. Liao, “Study on Hot Extrusion”, Journal of Materials Technology, 63 (1997), p. 254.
47. A. Mwembela, E. B. Konopleva, and H. J. McQueen, “Microstructural Development in Mg Alloy AZ31 During Hot Working”, Scripta Materialia, 37,11(1997), p. 1789.
48. 向四海,廖招順,“圓管熱間擠製加工之研究”,中國機械工程學會第十二屆學術研討會論文集,民國84年11月,p. 423。
49. 向四海,楊學奇,“異種金屬在熱擠製加工中之結合狀態分析”,中國機械工程學會第十四屆學術研討會論文集,民國86年12月,p. 183。
50. K. T. Chang and J. C. Choi, “Upper-Bound Solutions to Tube Extrusion Problems through Curved Dies”, J. Eng. Industry, Trans, ASME, Nov. (1972), p. 1108.
51. M. Mabuchi, K. Kubota, and K. Higashi, “New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars”, Materials Transactions, JIM, 36, 11 (1995), p. 1249.
52. M. M. Potapenko, V. A. Drobishev, V. Y. Filkin, I. N. Gubkin, V. V. Myasnikov, A. D. Nikulin, E. N. Shingarev, G. P. Vedernikov, S. N. Votinov, V. S. Zurabov, and A. B. Zolotarev, “Manufacture of Semifinished items of Alloys V-4Ti-4Cr and V-10Ti-5Cr for Use as a Structural Material in Fusion Applications”, Journal of Nuclear Materials, 233-237 (1996), p. 438.
53. E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonskii, “Correlation Between Metal Catalyst Particle Size and Carbon Nanotube Growth”, Chemical Physics Letters, 355 (2002), p. 497.
54. C. W. Wu and R. Hsu, “Extrusion of Three-layer Composite Hexagonal Clad Rods”, Journal of Materials Processing Technology, 123 (2002), p.47.
55. J. L. Alcaraz, J. M. Martinez-Esnaola, and J. G.. Sevillano, “An Analytical Approach to The Stress Field in The Extrusion of Bimetallic Tubes”, Int. J. Solids Structures, 33, 14 (1996), p. 2075.
56. 黃建成,“管材液壓鼓脹成形之力學解析”,國立中山大學機械與機電工程研究所,碩士論文,2000。
57. M. Ahmetoglu, K. Sutter, X. J. Li, and T. Alan, “Tube Hydroforming: Current Research, Applications and Need for Training”, Journal of Materials Processing Technology, 98(2000), p. 224.
58. Y. K. Fuh, “Current Status of the Tube Hydroforming (THF) Technology and Applications”, Forging, 12, 1(2003), p. 37.
59. 蔡錦文,“管材液壓鼓脹之實驗與模擬”,國立中山大學機械與機電工程研究所,碩士論文,2002。
60. M. Ahmetoglu and T. Altan, “Tube Hydroforming: State-of-the-Art and Future Trends”, Journal of Materials Processing Technology, 98(2000), p. 25.
61. F. Dohman and C. Hartl, “Tube Hydorforming – Research and Practical Application”, Journal of Materials Processing Technology, 71 (1997), p.187.
62. Y. K. Lin, C.C. Huang, and Y.M. Hwang, “Analysis on Tube Bulge Hydroforming Process with Consideration of Ellipsoidal Tube Surface”, Proceedings, International Conference on Advanced Materials Processing Technologies (AMPT'01), 2 (2001), p. 931, Madrid, Spain.
63. 陳文智,“管材於方形模具內液壓鼓脹成形之解析”,國立中山大學機械與機電工程研究所,碩士論文,2002。
64. 林瑞彰,“管材之成形極限研究”,國立中山大學機械與機電工程研究所,碩士論文,2003。
65. Y. M. Hwang, Y. K. Lin, H. C. Wu, and H. C. Chen, “FE-Simulations on T-shape Tube Hydroforming, "Proceeding, the 18th National Conference of CSME, (2001), p. 311, Taipei, Taiwan, R.O.C.
66. Y. M. Hwang and Y. K. Lin, "FE-Simulations of T-Shape Tube Hydroforming”, Key Engineering Materials, 233-236 (2003), p. 317.
67. H. J. Kim, B. H. Jeon, and J. J. Kim, Advanced Technology of Plasticity, Proceeding of the Fourth Internation Conference on Technology of Plasticity, (1993), p. 545.
68. M. Ahmed and M. S. J. Hashmi, “Estimation of Machine Parameters for Hydraulic bulge Forming of Tubular Components”, Journal of Materials Processing Technology, 64, (1997), p. 9.
69. Hideo Abe, “The State of the Art in Tube Hydroformation Technology in Japan”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 42, Aichi, Japan.
70. C. Y. Chuang, P. K. Cheng, and M. F. Li, “Introduction to the Tube Hydroforming Die”, Forging, 12, 1 (2003), p. 14.
71. M. Ahmed and M. S. J. Hashmi, “Finite-element Analysis of Bulge Forming Applying Pressure and In-plane Compressive Load”, Journal of Materials Processing Technology, 77 (1998), p. 95.
72. M. Koc and T. Altan, “A Overall Review of the Tube Hydroforming (THF) Technology”, Journal of Materials Processing Technology, 108 (2001), p. 25.
73. S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge Forming of Aluminum Alloy Tubes by Internal Pressure and Axial Compression”, Advanced Technology of Plasticity, 5th ICTP, Columbus, Ohio, USA, 1, Oct. (1996), p. 497.
74. Y. M. Huang, Y. K. Lin, and C. Y. Chung, “Experiment of Tube Bulging Forming and Determination of the Flow Stress of Tubular Materials”, Forging, 12, 4 (2003), p. 6.
75. Y. M. Huang, “Process Fusion: Tube Hydroforming and Crushing”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 105, Aichi, Japan.
76. K. I. Mori, A. U. Patwari, and S. Maki, “Finite Element Simulation of Hammering Hydroforming of Tubes”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 84, Aichi, Japan.
77. T. Altan, M. Koc, Y. Aueulan, and K. Tibari, “Formability and Design Issues in Tube Hydroforming”, Hydroforming of Tubes, Extrusion and Sheet Metals, 1 (1999), p. 105.
78. J. Kim and B. S. Kang, “Numerical Prediction of Bursting Failure in Bulge Forming of a Seamed Tube Using FEM”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 36, Aichi, Japan.
79. A. Shirayori, S. Fuchizawa, and M. Narazaki, “A Trial Design Method of Loading Paths by FEM Simulator for Free Hydraulic Bulging”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 18, Aichi, Japan.
80. Y. C. Wen, “The Introduction and Application of Tube Hydroforming Technology”, Forging, 9, 1 (2000), p. 50.
81. 鄭炳國,周金龍,“參加「第六屆國際塑性加工技術會議」及工廠訪問考察心得”,中華民國鍛造協會會刊,第9卷,第1期,89年3月,p. 63。
82. E. Bollinger and D. W. Jutten, “Tubes for Hydroforming”, Hydroforming of Tubes, Extrusions and Sheet Metals, 1 (1999), p. 97.
83. 賴耿陽,管材加工二次成形,復漢出版社,2001,p. 2。
84. T. Altan, M. Koc, Y. Aue-u-lan, and K. Tibari, “Formability and Design Issues in Tube Hydroforming”, Hydroforming of Tubes, Extrusions and Sheet Metals, 1 (1999), p. 105.
85. 王之佑,“管材液壓成形試驗機之設計與製作”,國立中山大學機械與機電工程研究所,碩士論文,2003。
86. B. J. Kim, D. I. Hyun, S. M. Oak, S. K. Choi, and Y. H. Moon, “Effect of Process Parameters on Tubular Hydroformability”, Key Engineering Materials, 233-236 (2003), p. 457.
87. 王宗鼎,“Ti3Al基超塑薄板之超塑性特性分析”,國立中山大學材料科學與工程研究所,碩士論文,1996。
88. 蕭一清,“5083鋁合金低溫超塑性研發與變形機構分析”,國立中山大學材料科學與工程研究所,博士論文,2001。
89. T. G. Nieh, J. Wadsworth, and O. D. Sherby, “Superplasticity in Metals and Ceramics”, Printed in the United Kingdom at University Press, Cambridge, USA, (1997).
90. 李敬仁,“鎂合金超塑變形之裂孔成核成長研究”,國立中山大學材料科學與工程研究所,碩士論文,2003。
91. 陳宗榮,“鋁鋰合金板材超塑成形因子與晶界滑移機構之分析”,國立中山大學材料科學與工程研究所,博士論文,1997。
92. 普翰屏,“8090鋁鋰合金低溫與高溫超塑板材之製程開發與形變機構分析”,國立中山大學材料科學與工程研究所,博士論文,1995。
93. 林鉉凱,“Material Development and Property Analysis of High Strain Rate and Low Temperature Superplasticity in AZ31 Mg Alloys”,國立中山大學材料科學與工程研究所博士論文計劃書,2002。
94. H. P. Pu and J. C. Huang, “Processing Routes for Intertransformation Between Low-and High-Temperature 8090 Al-Li Superplastic Sheets”, Scripta Metallurgica et Materiala, 33 (1995), p. 383.
95. H. P. Pu, F. C. Liu, and J. C. Huang, “Characterization and Analysis of Low-Temperature Superplasticity in 8090 Al-Li Alloys”, Metallurgy Material Transition, 26A (1995), p. 1153.
96. H. P. Pu and J. C. Huang, “Low-Temperature Superplasticity in 8090 Al-Li Alloys”, Scripta Metallurgical et Materiala, 28 (1993), p. 1125.
97. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, “Low Temperature Superplasticity in AZ91 Magnesium Alloy Processed by ECAE”, Scripta Materialia, 36 (1997), p. 681.
98. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, “Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries”, Acta Materialia, 47 (1999), p. 2047.
99. H. K. Lin and J. C. Huang, “Fabrication of Low Temperature Superplasticity AZ91 Mg Alloys Using Simple High-Ratio Extrusion Method”, Key Engineering Materials., 233-236 (2003), p. 875.
100. H. K. Lin and J. C. Huang, “High Strain Rate and/ or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods”, Materials Transactions, 43, 10 (2002), p. 2424.
101. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan, and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys—Towards Superplasticity Studies”, Materials Science and Engineering A, 302A (2001), p. 56.
102. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi, and K. Higashi, “Realization of High-Strain-Rate Superplasticity at Low Temperatures in a Mg-Zn-Zr Alloy”, Materials Science and Engineering A, 307A (2001), p. 119.
103. 黃志青,“輕金屬細化技術近況”,工業材料,198期,(2003),p. 114。
104. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, “Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure”, Scripta Materialia, 45 (2001), p. 89.
105. 黃建超,黃志青,何扭今,“AZ31鎂合金之管材擠型成型研發與超塑性研究”,中國材料科學學會論文集,2003。
106. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, “Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process”, Scripta Materialia, 39 (1998), p. 1221.
107. 張志溢,黃志青,“摩擦旋轉攪拌製程之新近發展與應用”,科儀新知,第25卷,第4期,(2004),p. 81。
108. H. Watanabe, T. Mukai, M. Mabuchi, and K. Higashi, “Superplastic Deformation Mechanism in Power Metallurgy Magnesium Alloys and Composites”, Acta Materialia, 49 (2001), p. 2027.
109. W. J. Kim, S. W. Chung, C. S. Chung, and D. Kum, “Superplasticity in Thin Magnesium Alloy Sheets and Deformation Mechanism Maps for Magnesium Alloys at Elevated Temperatures”, Acta Materialia, 49 (2001), p. 3337.
110. T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi, “Microstructural Evolution and Superplasticity of Rolled Mg-9Al-1Zn”, Materials Science and Engineering, A290 (2000), p. 139.
111. Y. H. Chen, S. Lee, and J. Y. Wang, “Isothermal Sheet Formability and Microstructure Study of Rolling Processed Magnesium Alloy AZ31”, Materials Science Forum, 419-422 (2003), p. 383.
112. J. Y. Wang, W. P. Hong, P. C. Hsu, C. C. Hsu, and S. Lee, “Microstructures and Mechanical Behavior of Processed Mg-Li-Zn Alloy”, Materials Science Forum, 419-422 (2003), p. 165.
113. D. M. Lee, B. K. Suh, B. G. Kim, J. S. Lee, and C. H. Lee, “Fabrication, Microstructures, and Tensile Properties of Magnesium Alloy AZ91/SiCp Composites Produced by Power Metallurgy”, Materials Science and Technology, 13 (1997), p. 590.
114. M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, “Experimental Investigation of Superplastic Behaviour Magnesium Alloys”, Materials Science and Technology, 13 (1997), p. 825.
115. Y. N. Wang, C. J. Lee, C. C. Huang, H. K. Lin, and J. C. Huang, “Influence from Extrusion Parameters on High Strain Rate and Low Temperature Superplasticity of AZ Serious Mg-Based Alloys”, Materials Science Forum, 426-432 (2003), p.2655.
116. Y. N. Wang and J. C. Huang, “Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy”, 中國材料科學學會論文集,2002。
117. V. M. Segal, “Materials Proceeding by Simple Shear”, Materials Science and Engineering A, 197A (1995), p. 157.
118. 楊仁豪,朝春光,“AZ31鎂合金經等通道轉角擠型(ECAE)後晶粒細化與超塑性之研究”,中國材料科學學會論文集,2002。
119. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, “Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-Equilibrium Grain Boundaries”, Acta Materialia, 47 (1999), p. 2047.
120. T. Mukai, T. G. Nieh, H. Iwasaki, and K. Higashi, “Superplasticity in Doubly Extruded Magnesium Composite ZK60/SiC/17p”, Materials Science and Technology, 14 (1998), p. 32.
121. T. Narutani and J. Takamura, “Grain-Size Strengthening in Terms of Dislocation Density Measured by Resistivity”, Acta Material, 39 (1991), p. 2037.
122. R. E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Boston, USA, (1994), p. 729.
123. D. Lahaie, J. D. Embury, M. M. Chadwick, and G. T. Gray, “A Note on The Deformation of Fine Grained Magnesium Alloys”, Scripta Materialia, 27 (1992), p. 139.
124. Y. Z. Lu, Q. D. Wang, W. J. Ding, X. Q. Zeng, and Y. P. Zhu, “Fracture Behavior of AZ91 Magnesium Alloy”, Materials Letters, 44 (2000), p. 265.
125. 吳信輝,“電子束或電弧銲接鎂合金之微織構與機性分析”,國立中山大學材料科學與工程研究所,碩士論文,2003。
126. S. P. Timoshenko and J. M. Gere, “Mechanics of Materials”, PWS Publishing Company (Third Edition), Boston, USA, (1990), p. 770.
127. 張兆豐主編,標準機械設計圖表便覽,臺隆書店出版,增補2板,77年,p. 3a-45.
128. 魏秋建,“車床”,機械製造,全華科技圖書出版,85年,p. 12-2。
129. “Nonferrous Metal Products”, Annual Book of ASTM Standards,02.02 (1990), p. B661
130. J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill Book Company, 5th., Singapore, (1989), p. 57.
131. E. M. Mielnik, Metalworking Science and Engineering, McGraw-Hill Book Company, 5th., USA, (1993), p. 39.
132. 吳志偉,“非軸對稱複合包蕊材擠製加工之研究”,國立交通大學機械工程研究所,博士論文,1999。
133. 向四海,巫賢榮,“熱間擠製之模式與實驗分析研究”,中國機械工程學會第十一屆學術研討會論文集,民國83年11月,p. 325。
134. 黃德福,“複合材擠製之研究”,國立中山大學機械與機電工程研究所,博士論文,2002。
135. C. C. Huang, J. C. Huang, Y. K. Lin, and Y. M. Hwang, “Processing Fine-Grained and Superplastic AZ31 Mg Tubes for Hydroforming”, Key Engineering Material, (2004), in press.
136. C. I. Chang, C. J. Lee, J. C. Huang, “Relationship between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg alloys”, Scripta Materialia, (2004), in press.
137. Y. N. Wang and J. C. Huang, “Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy”, Material Transition 44 (2003), p. 2276.
138. 張志溢,“摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究”,國立中山大學材料科學與工程研究所,碩士論文,2004。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code