Responsive image
博碩士論文 etd-0706105-180202 詳細資訊
Title page for etd-0706105-180202
論文名稱
Title
利用金魚藻與陽明柳移除水中多環芳香烴(菲與芘)
Removal polycyclic aromatic hydrocarbons (phenanthrene and pyrene) in aquatic phase by Ceratophyllum demersum and Naja gramunea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-08
繳交日期
Date of Submission
2005-07-06
關鍵字
Keywords
芘、陽明柳、連續流、金魚藻、水草、菲、多環芳香烴
plant, aquatic, phenanthrene, PAH, pyrene
統計
Statistics
本論文已被瀏覽 5728 次,被下載 1788
The thesis/dissertation has been browsed 5728 times, has been downloaded 1788 times.
中文摘要
摘要
多環芳香烴(Polycyclic aromatic hydrocarbons)為疏水性有機污染物,由於其高疏水性,所以很容易被其他有機物質所吸附,並進入生物體內,造成高度生物累積性與毒性,進而影響生物體的內分泌系統,或產生突變作用。由於現代工業高度發展,環境中累積多環芳香烴濃度較過去高出許多,故除了盡量避免產生多環芳香烴之外,如何處理也是一項重要的課題。
含有多環芳香烴的有機廢水的主要處理方式為微生物處理,而利用植物吸附配合微生物分解,則是近來新興的方法,由於價格低廉且處理效果良好,逐漸受到重視。然而直接使用植物吸附水中多環芳香烴則較少被提及。研究植物吸附除可了解植物與土壤中微生物相互配合使用時吸附的角色,更可使植物吸附法擁有更多應用上之彈性與可能性,故本研究重點放在直接利用不同植物吸附水中多環芳香烴的各種比較。
本研究主要是以水生植物金魚藻 (Ceratophyllum demersum)配合連續進流裝置進行菲 (Phenanthrene, Phe)的吸附,觀察其水溶液濃度變化與植物累積量,更進一步加入芘 (Pyrene, Pyr)來探討競爭效應的影響,最後並使用了過去研究已有成果的陽明柳 (Naja gramunea Del.)於此裝置進行吸附,觀察不同植物於此裝置對菲與芘的處理效果。
在批次實驗中,金魚藻吸附Phe與Pyr的動力學常數分別為0.19與0.22。與過去研究利用陽明柳同樣吸附Phe與Pyr相比,金魚藻的動力學常數均較大。而金魚藻吸附Phe與Pyr的吸附平衡常數則為1.36與19.24,若與陽明柳相比,陽明柳對Phe的吸附量大於金魚藻,但對Pyr而言則反之。
金魚藻於連續進流裝置中,對於Phe有較良好的吸附效果,但是若添加了Pyr後則出現吸附飽和時間延遲的現象,此應為Phe與Pyr的競爭現象。陽明柳應用於此裝置中,同樣也可以良好地吸附水中的Phe與Pyr。總體來說,這兩種無根的水生植物,於此裝置均可以對水中的Phe與Pyr有著良好的處理效果。
Abstract
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic pollutants. Because of their highly hydrophobic property, PAHs easily absorbed by organic matters. They also display highly biological accumulation ability and toxicity. PAHs can interrupt organism’s endocrine systems and some are considered bearing mutagenic or carcinogenic potentialities. Because of industrialigation, the extent of accumulated PAHs in the environment at present is significantly higher than those in the past. Therefore, while it is best to avoid further producing of these compounds if at all feasible; efforts to limit the introduction of these compounds into the environment by treating point pollution sources should always be made.
The traditional approach to treat organic pollutants, including PAHs, in wastewater is mainly microbial based degradation. But recently due to its low cost and relatively high efficiency, treatment using aquatic plants combined with microbial degradation became popular. However, there have not much work done in using aquatic plant alone to treat PAHs. To study the sorption of PAHs by aquatic plant can provide information regarding the role of plant and microbial actions, and to enable such bioremediation technology more flexibile and feasible in application. Therefore, the forcus of this research is using plant solely to remove PAHs in a man-made wastewater.
In this study, an aquatic plant, Ceratophyllum demersum, was used to sorb phenanthrene (Phe) with a continuous flow device. The competition effect in sorption by another PAHs, pyrene (Pyr), was also studied. In addition, another aquatic plant, Naja gramunea Del., was tested using the same system.
In the batch experiment, the sorption kinetic constants of phenanthrene and pyrene for Ceratophyllum demersum are 0.19 and 0.22, respectively. Compared with Ceratophyllum demersum, Naja gramunea Del. has a higher kinetic constant. The sorption equilibrium constants of phenanthrene and pyrene for Ceratophyllum demersum are 1.36 and 19.24, respectively. Compared with Naja gramunea Del., Ceratophyllum demersum has a higher equilibrium constant for phenanthrene, but with a lower equilibrium constant for pyrene.
A competition effect was observed by the delayed phenanthrene’s saturation time by using pyrene as the possible background pollutant in the continuous flow system. Naja gramunea Del. was also applied in the same system for treating phenanthrene and pyrene in the same way. In conclusion, these two aquatic plants demonstrated great potentials in applications used for treating wastewaters containing PAHs due to low energy and cost of the device.
目次 Table of Contents
目錄
英文摘要 Ⅰ
中文摘要 Ⅲ
目錄 Ⅴ
圖目錄 Ⅶ
附錄目錄 Ⅸ
第一章 前言 1
第二章 文獻回顧 3
2-1 多環芳香烴化合物的基本特性 3
2-2 疏水性有機污染物於水相及固相間的吸附機制 4
2-3 動力學模式 5
2-4 描述水相中吸附平衡模式 5
2-5 植物對PAHs的影響 6
2-6 人工溼地的研究 7
2-7 金魚藻與陽明柳 9
第三章 實驗方法與材料 12
3-1 植物的處理 12
3-2 試藥 12
3-3 批次實驗 13
3-4 連續吸附實驗 14
3-5 植物萃取 16
3-6 儀器分析 16
3-7 檢量線 17
3-8 植物含水量 18
第四章 結果與討論 19
4-1 批次實驗動力學部分 19
4-2 批次實驗吸附平衡部分 23
4-3 連續流吸附部分 24
第五章 討論與建議 34
參考文獻 36




圖目錄
圖2-1 美國環保署列為重要的16種PAHs 3
圖2-2 Kyambadde的連續進流裝置 9
圖2-3 左為金魚藻,右為陽明柳 11
圖3-1 連續進流裝置剖面圖 14
圖3-2 裝置實際照片 14
圖4-1 Phe於水中的吸附動力學 21
圖4-2 Pyr於水中的吸附動力學 21
圖4-3 PAHs前10分鐘的吸附動力學 22
圖4-4 吸附等溫線 23
圖4-5 Phe連續進流空白實驗 24
圖4-6 金魚藻短時間連續實驗中Phe隨時間變化圖 27
圖4-7 金魚藻累積濃度 27
圖4-8 金魚藻長時間連續進流實驗中Phe隨時間變化圖 27
圖4-9 金魚藻累積濃度 27
圖4-10 Phe水中濃度變化 (實線:金魚藻;虛線:陽明柳) 28
圖4-11 植物累積Phe (黑色:金魚藻;白色:陽明柳 28
圖4-12 前6小時有無Pyr對金魚澡吸附Phe影響之比較 (only B1) 30
圖4-13 有無Pyr對金魚澡吸附Phe吸附量影響之比較 30
圖4-14 Pyr水中濃度變化 (實線:金魚藻;虛線:陽明柳) 31
圖4-15 植物累積Pyr (黑色:金魚藻;白色:陽明柳) 32













附錄目錄
附錄1. Phe回收率校正 40
附錄2. Pyr回收率校正 44
附錄3. 金魚藻對Phe動力學 (圖4-1) 42
附錄4. 金魚藻對Pyr動力學 (圖4-2) 44
附錄5. 金魚藻對Phe與Pyr動力學常數 (圖4-3) 46
附錄6. 金魚藻對Phe與Pyr吸附等溫線 (圖4-4) 48
附錄7. 連續進流空白實驗(僅放置植物,未添加PAHs) (圖4-5) 49
附錄8. 金魚藻連續吸附Phe 4.26小時 (圖4-6 4-7) 52
附錄9. 金魚藻連續吸附Phe 24.55小時 (圖4-8 4-9) 53
附錄10. 金魚藻連續吸附Phe與Pyr 55
附錄11. 陽明柳連續吸附Phe與Pyr 59
附錄12. 金魚藻含率 63
附錄13. 附錄9與附錄10 Phe吸附比較 (圖4-10 4-11 4-14 4-15) 64
附錄14. 前六分鐘有無Pyr對金魚藻吸附Phe吸附量影響比較 (B1) (圖4-12) 66
附錄15. 有無Pyr對金魚藻吸附Phe吸附量影響比較 (圖4-13) 67
參考文獻 References
參考文獻
Bankston J. L., Sola D. L., Komor A. T. and Dwyer D. F. (2002) Degration of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Wat. Res. 36, 1539-1546.
Camargo M. C. R. and Camargo M. C. F. (2003) Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14, 49-53.
Giraud G., Guiraud P., Kadri M., Blake G. and Steiman R. (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constracted wetland for wastewater treatment. Wat. Res. 35, 4126-4136.
Henner P., Schiavon M., Morel J. L. and Lichtfouse E. (1997) Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Anal. Mag. 25, 56-59.
Herrenknecht A. Dugay, C., Czok M., Guyon F., Pages N. (2002) New procedure for selective extraction of polycyclic aromatic hydrocarbons in plants for gas chromatographic-mass spectrometric analysis. J. of Chromato. A 958, 1-7.
Ke L., Wong T.W.Y., Wong A.H.Y., Wong Y.S. and Tam N.F.Y. (2003) Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere 52, 1581-1591.
Ke L., Wong W.Q., Wong Teresa W.Y., Wong Y.S. and Tam Nora F.Y. (2003) Removal of Pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51, 25-34.
Krishnan G., Horst G. L., Darnell S. and Powers W. L. (2000) Growth and development of smooth bromegrass and tall fescue in TNT-contaminated soil. Environ. Pollution 107, 109-116.
Kyambadde J., Kansiime F., Gumaelius L. and Dalhammar G. (2004) A comparative study of Cyperus paperus and Miscanthidum violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Wat. Res. 38, 475-485.
Liste H. H. and Alexander M. (2000) Plant-promoted pyrene degradation in soil. Chemosphere 40, 7-10.
Liste H. H. and Alexander M. (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40, 11-14.
Machate T., Noll H., Behrens H. and Kettrup A. (1997) Degradation of phenanthrene and hydraulic characteristics in a constracted wetland. Wat. Res. 31, 554-560.
Maila M. P. and Cloete T. E. (2002) Germination of Lepidium sativum as method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Interna. Biodeterio. & Biodegra. 50, 107-113.
Maillacheruvu K. and Safaai S. (2002) Naphthalene removal from aqueous systems by Sagittarius sp. J. Environ. Sci. Health 37, 845-861.
Simpson C. D., Cullen W. R., Quinlan K. B. and Reimer K., Reimer J. (1995) Methodology for determination of priority pollutant polycyclic aromatic hydrocarbons in marine sediments, Chemosphere 31, 4143-4155.
王尚菁 (2004) 水生植物對多環芳香烴化合物的吸附作用,國立中山大學海洋環境學系碩士論文。
林青谷 (1997) 利用水中植物去除廢水中之有毒金屬,國立中山大學海洋環境學系碩士論文。
郭利榮 (1999) 溶解性有機相對疏水性有機污染物於水體中吸附行為影響之探討,國立中山大學海洋環境學系碩士論文。
謝明村 (2000) 台灣高雄港區及其鄰近海域沉積物中石油衍生性化合物含量分佈之研究,國立中山大學海洋環境學系碩士論文。
水草全書 (1989),柯清水編著,翠湖水草栽培研究所出版。
台灣水生植物圖誌 (2001),楊遠波等編著,行政院農業委員會印行。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code