Responsive image
博碩士論文 etd-0706107-200333 詳細資訊
Title page for etd-0706107-200333
論文名稱
Title
超寬頻摻鉻光纖製程與特性之研究
Fabrication and Characteristics of Broadband Cr-doped Fibers by Drawing Tower
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-24
繳交日期
Date of Submission
2007-07-06
關鍵字
Keywords
摻鉻光纖、抽絲塔、頻寬
drawing tower, Cr4+:YAG
統計
Statistics
本論文已被瀏覽 5612 次,被下載 1708
The thesis/dissertation has been browsed 5612 times, has been downloaded 1708 times.
中文摘要
近來光纖中OH- 離子去除的技術突破,使得光纖之可使用頻寬從1.3 μm拓展至1.6μm,然而目前所常用的單一光纖放大器均無法涵蓋整個1.3 μm~1.6μm頻寬範圍。最近,摻鉻光纖已被證實擁有1.3 μm至1.6μm的寬頻螢光頻譜,其極具有發展成為超寬頻放大光源的潛力。
本研究以Cr:YAG作為纖芯(core),採用管中棒(rod in tube, RIT) 的方法來製作預型體,再利用商用抽絲塔的製程加上預型體管內的壓力控制來製作摻鉻光纖。目前已成功抽出纖芯為16μm及26μm的光纖絲,其自發性輻射頻譜所展示出來的譜線,涵蓋了1.2到1.55μm的波段,輻射功率強度也已提升至在1w的激發能量下每nm長度平均有2.5nw的自發輻射。所研發摻鉻光纖展示的300nm之頻寬能完全覆蓋1.3到1.6μm的常用通訊波段,本研發製程的好處在於其光纖生長速度快、纖芯直徑均勻及真圓度好,極適合於商業化量產,因此研發摻鉻光纖擁有極大的潛力被應用於的超寬頻的光纖放大器上。
Abstract
The breakthrough technology in dry fiber fabrication has opened the possibility for using fiber bandwidths all the way from 1.3 to 1.6μm. However, the fiber amplifier used in commercial product, such as erbium-doped fiber amplifier (EDFA), can not fully cover the whole fiber bandwidths from 1.3 to 1.6μm with a single fiber amplifier. Recently, the Cr4+-doped fiber has shown a broadband emission from 1.3 to 1.6μm. Therefore, it is interesting to develop a single fiber amplifier which can operate the wide bandwidth of the 1.3~1.6μm emission.

In this study, we have successfully fabricated and measured the Cr-doped fibers by using a commercial drawing-tower technique and a rod-in-tube method. The core diameters were 26 and 16μm. The Cr4+ fluorescence spectrum showed a broadband emission from 1.2 to 1.6μm. The radiation intensity was up to the order of nW. This indicates that the new Cr-doped fibers may be used as a broadband fiber amplifier. The advantages of using the drawing tower to fabricate the Cr-doped fibers are to have a better control of the core diameter, the fiber uniformity and circularity. Therefore, the Cr-doped fibers may have a potential for commercial production and application to lightwave communication systems.
目次 Table of Contents
中文摘要 I
Abstract II
致謝 III
內容目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
第二章 Cr4+:YAG晶體光纖的特性 10
2.1 Cr4+:YAG的晶體結構與特性 10
2.2 Cr4+:YAG的能階模型與吸收及放射頻譜 15
第三章 Cr4+:YAG晶體光纖之製作 19
3.1 文獻探討 19
3.2 抽絲塔製造Cr4+:YAG晶體光纖 22
3.2.1 商用抽絲塔介紹及抽絲過程 22
3.2.2 Cr4+:YAG預型體製造及其製程 31
第四章 Cr4+:YAG晶體光纖之量測 43
4.1 摻鉻光纖端面之研磨拋光 43
4.2 Cr4+:YAG晶體光纖之折射率量測 48
4.3 Cr4+:YAG晶體光纖之EPMA成分分析 51
4.4 Cr4+:YAG晶體光纖之自發輻射頻譜 54
4.5 Cr4+:YAG晶體光纖之遠場量測 60
第五章 結論與未來工作 62
5.1 結論 62
5.2 未來工作 63
參考文獻 65
參考文獻 References
[1] Vivek Alwayn, “Optical Network Design and Implementation,” Cisco systems, Mar 17, 2004.
[2] D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” New Developments in Optical Amplifiers (Ref. No. 1998/492), IEE Colloquium, vol.26,pp.12/1-12/5,1998.
[3] S. Q. Man, H. W. Liu, Y. H. Wong, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifier,” Lasers and Electro-Optics Society (LEOS) Annual Meeting, vol. 1, pp.196-197 , 1998.
[4] S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42 %,” Optical Fiber Communication (OFC) Conference, vol. 4, pp. PD1, 2001.
[5] Y. Miyajima, T. Kamukai, and T. Sugawa, “ 1.31-1.36 μm optical amplification in Nd3+ -doped fluorescent fiber,” Electron. Lett., vol. 26, pp. 194-195, 1990.
[6] E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” New York: Wiley, 1994, Ch. 4.
[7] S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New York: Wiley, 1994, Ch. 2.
[8] Y. Shi and O. poulsen, “High-power broadband single mode Pr3+-doped fiber superfluoresence light source,” Electron. Lett., vol. 29, no. 22, pp. 1945-1946, 1993.
[9] Michael J. Connelly, “Semiconductor Optical Amplifiers, ”Kluwer Academic Press,2002.
[10] N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Quant. Electron., vol. 8, no. 3, pp. 548-559, May/June 2002.
[11] C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005).
[12] C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+ YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004).
[13] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Crystal Growth. 274, 522 (2005).
[14] Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glass,” J. of Alloys and compounds, Vol. 341, pp. 19-27, 2002.
[15] U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[16] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[17] J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577,1999.
[18] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG, “OSA Proceedings on Advanced Solid-State Lasers, Vol. 10, pp. 92-94, 1991.
[19] Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[20] S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF Laser,” IEEE, IMCT’94, pp. 937-940, 1994.
[21] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[22] Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Ce4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[23] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” SOA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[24] 黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[25] Alphan Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state laser,” J. Opt. Soc. Am., Vol. 18, No. 11, pp. 1578-1586, 2001.
[26] H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. of Quantum Electron., vol. 29, p. 2508. 1993
[27] 華榮電線電纜抽絲標準作業手冊
[28] E, Snitzer, and R. Tummineli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14, 757 (1989).
[29] 黃昱銘, “抽絲塔製程之摻鉻光纖, ” 碩士畢業論文, 國立中山大學, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code