Responsive image
博碩士論文 etd-0706108-185149 詳細資訊
Title page for etd-0706108-185149
論文名稱
Title
靜電分離原理去除廢輪胎熱裂解產物焦炭之灰份
Removal of Ash from Waste-Tire Pyrolytic Char by the Principle of Electrostatic Separation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-02
繳交日期
Date of Submission
2008-07-06
關鍵字
Keywords
焦炭、靜電分離原理、碳黑、灰份含量、非線性迴歸、熱裂解
principle of electrostatic separation, ash content, char, carbon black, non-linear regression, pyrolysis
統計
Statistics
本論文已被瀏覽 5690 次,被下載 3756
The thesis/dissertation has been browsed 5690 times, has been downloaded 3756 times.
中文摘要
  熱裂解程序為處理廢輪胎的方法之一,係將廢輪胎置於高溫無氧之環境中分解,產物包含氣相之可燃性氣體、液相之裂解油,以及固相之焦炭(char)。可燃性氣體與裂解油為具有經濟價值之燃料,而固相之焦炭主要乃由碳黑與灰份所構成,若加以適當之處理,提高焦炭中碳黑之含量,則將具有再利用之經濟價值。有鑑於此,本研究旨在利用焦炭中碳黑與灰份之間電阻係數之差異,運用靜電分離原理分離焦炭中之碳黑與灰份,藉以提昇焦炭中碳黑之含量及其經濟價值。
  本研究自行設計靜電分離系統(Electro-Static Separator, ESS),包含針板電極(Needle-Plate Electrode, NPE)與針棒電極(Needle-Bar Electrode, NBE)等兩種不同幾何形態之放電電極,以及使用刮粉式粉塵產生系統及螺旋噴粉管柱等兩種粉塵產生系統,並自行組裝焦炭低壓熱裂解設備,針對放電電極幾何形態、焦炭粒徑分佈及焦炭低壓二次熱裂解程序等參數對於灰份分離效能之影響,以及廢輪胎熱裂解產生之原始焦炭、400 oC與600 oC低壓二次熱裂解焦炭、600 oC低壓二次熱裂解焦炭混合12%氧化鋅之混合焦炭及N660碳黑混合14.5%金屬氧化物之人工焦炭等四種類型焦炭,探討經靜電分離程序處理後之碳黑-灰份分離效能。
  以原始焦炭分別於NPE及NBE放電系統進行靜電分離實驗,因NBE表面積較小,放電電流較高,故NBE放電系統之平板收集效率高於NBE放電系統,然而NBE及NPE放電系統對於焦炭之碳黑-灰份分離效能方面並無明顯之差異,且原始焦炭之碳黑-灰份分離效能不佳。
400 oC與600 oC低壓二次熱裂解焦炭係原始焦炭經由低壓二次熱裂解程序去除表面沉積之熱裂解油,因熱裂解溫度愈高則熱裂解油去除比例愈高,使焦炭之電阻係數愈低,故400 oC二次熱裂解焦炭之收集效率高於600 oC二次熱裂解焦炭,且經由破碎之焦炭的收集效率低於未破碎之焦炭,係粒徑愈大則微粒飽和帶電量愈高所致。雖然二次熱裂解序及焦炭顆粒之破碎程序對於焦炭之收集效率有明顯之影響,然而焦炭中碳黑與灰份被收集及穿透ESS之比例相近,故碳黑-灰份分離效能不佳。
  為進一步探討固-固顆粒藉由靜電分離程序加以分離之可行性,並釐清碳黑-灰份分離效能不佳之因素,本研究亦分別針對600 oC低壓二次熱裂解焦炭混合12%氧化鋅之混合焦炭及N660碳黑混合14.5%金屬氧化物之人工焦炭進行靜電分離實驗。混合焦炭之靜電分離實驗結果顯示,碳黑收集效率高於氧化鋅收集效率,但僅約有30%之氧化鋅為ESS所收集,且只有略高於30%之焦炭為ESS所收集,故焦炭與氧化鋅在收集平板上及穿透ESS部份之分佈比例相近,碳黑與灰份之分離效能亦不明顯。
  人工焦炭之靜電分離效能方面,相較於原始焦炭與二次熱裂解焦炭,人工焦炭之收集效率偏低,乃因碳黑為低電阻係數之材質,收集於平板上之碳黑因電荷散失而容易自平板再揚起所致。然而相較於碳黑,人工配製焦炭中之灰份則能為放電系統之平板所收集。本研究藉由修正之德意志-安德森方程式(Deutsch-Anderson equation)針對人工焦炭收集效率及碳黑收集效率進行非線性迴歸模擬,並以迴歸求解之效率方程式推估穿透靜電分離系統之人工焦炭的灰份含量可低於2%,與未經靜電分離程序處理之人工焦炭14%灰份含量相比,碳黑與灰份透過靜電分離處理後,具有明顯之分離效能。
Abstract
Pyrolysis has been a useful procedure to treat waste-tire, which decomposes waste-tire at high temperature in the absence of oxygen. This thermal decomposition process generates pyrolysis oil, combustible gas, and char, which distribute in liquid phase, gas phase, and solid phase, respectively. Pyrolysis oil and combustible gas are fuels, while char is composed of carbon black and ash. Thus, char would be economically worth while to be treated before reuse. In this study, based on the resistivity difference between carbon black and ash, ash can be removed from char in the principle of electrostatic separation and thus increase the value of char.
In this study, the objective was to separate ash from char by electrostatic separation process, different char including waste-tire pyrolytic char (raw char), low pressure re-pyrolytic char, ZnO-added char (12% ZnO mixed with 600 oC re-pyrolytic cahr) and man-made char (N600 carbon black mixed with 14.5% metallic oxide) were tested. The Electro-Static Separator (ESS) was designed and constructed with two types of discharge electrodes including a needle-plate electrode (NPE) and a needle-bar electrode (NBE) and two kinds of dust feeders to generate either fine or coarse particles.
The results indicated that raw char had higher collection efficiency using the NBE system than the NPE system in the operating voltages of -7 kV to -15 kV because the surface area of the NBE system was less than the NPE system, thus led higher surface charge density for the NBE system than the NPE system, resulting in higher discharge current of the NBE system.
In order to lower resistivity and reduce deposited pyrolysis oil on char, low pressure repyrolysis process was used. Because the removal efficiency of pyrolysis oil is proportional to repyrolysis temperature, more pyrolysis oil can be removed from the surface of char, resulting in more carbon blacks exposed on the char surface as conductive material. Thus, the collection efficiency of 600 oC repyrolytic char was less than that of 400 oC repyrolytic char. Furthermore, because particle charging quantity was proportional to particle size, fine char particles had less collection efficiency than coarse char particles.
However, both raw char and repyrolytic char, the collection efficiency of carbon and ash had similar trends, suggesting that similar percentage of carbon and ash were collected on the plate and penetrated the ESS system. Therefore, the separation efficiency of carbon and ash were similar, same situation was observed for the ZnO-added char.
In order to verify the feasibility of carbon and ash separation by electrostatic separation process, N660 carbon black mixing with 14.5% man-made ash (Al2O3, ZnO and CaO composed) to simulate man-made char, which was further used to proceed the electrostatic separation experiments in this study.
The results indicated that the collection efficiency of man-made char increased with operating voltage, and the ash content seems to increase with voltage. Carbon black is a low resistivity material, which causing sparkover during the experiments, thus operating voltage cannot be regulated more than -8.25 kV. In order to verify the feasibility of carbon black and ash separation by the principle of electrostatic separation, this study applied non-linear regression to model the collection efficiency of man-made char, carbon black and ash, and further simulate the collection efficiency at higher electrical field strength. The simulated results indicated that the maximum collection efficiency of carbon and ash was approached around -10 kV/cm of carbon black and ash and their collection efficiencies were similar. The collection efficiency of ash was close to the ash content of man-made char (the collection efficiency of ash equal to the collected ash per mass of injected char), suggesting that most injected ash was collected by the ESS system. In addition, the ash content of penetration char was also simulated, the modeling results showed that the ash content of penetrated char were lower than 2%, while was relatively lower than the raw man-made char, and more than 75% injected char could penetrate the ESS system during the operation procedure. According to the modeling results, solid-solid separation technology could be more efficient if carbon and ash are independently separate particles, and lower resistivity materials would penetrate the ESS system and higher resistivity materials would be collected by the electrostatic separation process.
目次 Table of Contents
目 錄
中文摘要 I
英文摘要 III
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1-1
1-1 研究動機 1-1
1-2 研究目的 1-3
第二章 基礎理論 2-1
2-1 電暈放電 2-1
2-2 微粒充電 2-8
2-3 氣流拖曳力 2-12
2-4 微粒收集 2-16
第三章 文獻回顧 3-1
3-1 輪胎結構與組成 3-2
3-2 熱裂解程序與焦炭組成 3-3
3-2-1 焦炭近似組成 3-6
3-2-2 焦炭灰份組成 3-9
3-2-3 焦炭電阻係數 3-9
3-3 靜電分離設備幾何型式 3-12
3-4 靜電分離程序操作條件 3-15
3-4-1 電場強度與電壓供應型式 3-16
3-4-2 操作流量與微粒濃度 3-18
3-4-3 微粒之粒徑分佈 3-19
第四章 研究方法 4-1
4-1 研究流程 4-1
4-2 研究設備 4-3
4-2-1 靜電分離系統 4-3
4-2-2 焦炭二次熱裂解系統 4-10
4-3 實驗方法 4-10
4-3-1 焦炭二次熱裂解實驗 4-10
4-3-2 靜電分離實驗 4-13
4-4 物理化學性質分析 4-14
4-4-1 焦炭化學性質分析 4-14
4-4-2 焦炭物理性質分析 4-16
第五章 結果與討論 5-1
5-1 系統測試 5-1
5-1-1 電壓-電流曲線 5-1
5-1-2 焦炭注入速率 5-4
5-2 焦炭二次熱裂解 5-6
5-3 焦炭物理化學特性 5-13
5-3-1 焦炭近似組成 5-13
5-3-2 灰份組成 5-14
5-3-3 焦炭表面元素分析 5-19
5-3-4 物理特質分析 5-22
5-4 原始焦炭灰份分離效能 5-27
5-4-1 焦炭收集效率 5-27
5-4-2 灰份分離效能 5-29
5-5 二次熱裂解焦炭灰份分離效能 5-33
5-5-1 焦炭收集效率 5-33
5-5-2 灰份分離效能 5-35
5-6 人工配製焦炭靜電分離實驗 5-38
5-6-1 混合焦炭靜電分離效能 5-38
5-6-2 人工焦炭灰份分離效能 5-39
5-6-3 靜電分離效率模擬與推估 5-42
第六章 結論與建議 6-1
6-1 結論 6-1
6-2 建議 6-3
參考文獻 7-1
附錄A A-1
附錄B B-1
附錄C C-1
參考文獻 References
Allen, J.L., Gatz, J.L., Eklund, P.C., “Applications for activated carbons from used tire: butane working capacity”, 1999, Carbon, Vol. 37, pp.1485-1489.
ASTM D 3173-03, “Standard Test Method for Moisture in the Analysis Sample of Coal and Coke”, United States: ASTM International.
ASTM D 3174-04, “Standard Test Method for Ash in the Analysis Sample of Coal and Coke and Coke from Coal”, United States: ASTM International.
ASTM D 6357-04, “Standard Test Methods for Determination of Trace Elements in Coal, Coke, and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectrometry”, United States, ASTM International.
Barbooti, M.M., Mohamed, T.J., Hussain, A.A. et al., “Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere”, 2004, Journal of Analytical and Applied Pyrolysis, Vol. 72, pp.165-170.
Bouvier, J.M., Charbel, F., Gelus, M., “Gas-solid pyrolysis of tire wastes-kinetics and material balances of batch pyrolysis of used tires”, 1987, Resources and Conservation, Vol. 15, pp.205-214.
Byeon, J.H., Hwang, J., Park, J.H. et al., “Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge”, 2006, Journal of Aerosol Science, pp.1618-1628.
Chaala, A., Darmstadt, H., Roy, C., “Acid-base method for the demineralization of pyrolytic carbon black”, 1996, Fuel Processing Technology, Vol. 46, pp.1-15.
Chang, J.S., Looy, P.C., Webster, C., “The effects of dust loadings on the collections of fine particles by an electrostatics precipitator with dc or pulse energized precharges”, 1998, Journal of Aerosol Science, Abstracts of the 5th international Aerosol Conference, Vol. 29, pp.S1127-S1128.
Chang, Y.M., “On pyrolysis of waste tire: degradation rate and product yields”, 1996, Resources, Conservation and Recycling, Vol. 17, pp.125-139.
Cheng, D.K., “Fundamentals of engineering electromagnetics”, 1993, Addison-Wesley.
Dai, X., Yin, X., Wu, C. et al., “Pyrolysis of waste tires in a circulating fluidized-bed reactor”, 2001, Energy, Vol.26, pp.385-399.
Darmstadt, H., Roy, C., Kaliaguine, S., “Characterization of pyrolytic carbon blacks from commercial tire pyrolysis plants”, 1995, Carbon, Vol. 33, pp.1449-1455.
Dors, M., Mizeraczyk, J., Czech, T. et al., “Removal of NOx by DC and pulsed corona discharges in a wet electrostatic precipitator model”, 1998, Journal of Electrostatics, Vol. 45, pp.25-36.
Falaguasta, M.C.R., Coury, J.R., Nóbrega, S.W., “Scaleup investigation of a wire-plate geometry electrostatic precipitator”, 2006, Particulate Science and Technology, Vol. 24, pp.453-465.
Fujii, T., Aoki, Y., Yoshioka, N. et al., “Removal of NOx by DC corona reactor with water”, 2001, Journal of Electrostatics, Vol. 51-52, pp.8-14.
Helleur, R., Popovic, N., Ikura, M. et al., “Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires”, 2001, Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp.813-824.
Jayaram, S., Berezin, A.A., Looy, P.C. et al., “Semipilot plant pulse energized cold-precharger electrostatic precipitator tests for collection of moderately high resistivity flyash particles”, 1996, IEEE Transactions on Industry Application, Vol. 32, No. 4, pp.851-857.
Jedrusik, M., Świerczok, A., Modzel, P., “Migration velocity and visualization of the trajectory of fly ash particles inside an electrostatic precipitators”, 1998, Journal of Electrostatics, Vol. 44, pp.77-84.
Jedrusik, M., Swierczok, A., Teisseyre, R., “Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design”, 2003, Power Technology, Vol. 135-136, pp.295-301.
Jedrusik, M., Gajewski, J.B., Świerczok, A.J., “Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators”, 2001, Journal of Electrostatics, Vol. 51-52, pp.245-251.
Ji, J.H., Hwang, J., Bae, G.N., Kim, Y.G., “Particle charging and agglomeration in DC and AC electric fields”, 2004, Journal of Electrostatics, Vol. 61, pp.57-68.
Kaminsky, W., Mennerich, C., “Pyrolysis of synthetic tire rubber in a fluidized-bed reactor to yield 1, 3-butadiene, styrene and carbon black”, 2001, Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp.803-811.
Kawada, Y., Kaneko, T., Ito, T. et al., “Simultaneous removal of aerosol particles, Nox and SO2, from incense smokes by a DC electrostatic precipitator with dielectric barrier discharge precharges”, 2002, Journal of Physics D: Applied Physics, Vol. 35, pp.1961-1966.
Kawada, Y., Kubo, T., Ehara, Y. et al., “Development of high collection efficiency ESP by barrier discharge system”, 1999, IEEE, pp.1130-1135.
Kim, S.H., Lee, K.W., “Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models”, 1999, Journal of Electrostatics, Vol. 48, pp.3-25.
Kim, Y.J., Jeong, S.H., Hong, W.S. et al., “Effect of energization on the particle collection in a bench-scale cylindrical electrostatic precipitator”, 1998, Journal of Aerosol Science, Vol. 29, pp.S925-S926.
Kocik, M., Dekowski, J., Mizeraczyk, J., “Particle precipitation efficiency in an electrostatic presipitator”, 2005, Journal of Electrostatics, Vol. 63, pp.761-766.
Lee, W.H., Kim, J.Y., Ko, Y.K. et al., “Surface analysis of carbon black waste materials from tire residues”, 1999, Applied Surface Science, Vol. 141, pp.107-113.
Liang, X., Looy, P., Jayaram, S. et al., “Mercury and other trace elements removal characteristics of dc and pulse energized electrostatic precipitator”, 1998, IEEE, pp.1927-1932.
Mark, J.E., Erman, B., Eirich, F.R., “Science and technology of rubber”, 2005, London: Elsevier Academic Press, 3rd edition, Ch14.
Miller, J., Hoferer, B., Schwab, A.J., “The impact of corona electrode configuration on electrostatic precipitator performance”, 1998, Journal of Electrostatics, Vol. 44, pp.67-75.
Mizuno, A., “Electrostatic precipitation”, 2000, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp.615-624.
Navarrete, B., Cañadas, L., Cortes, V. et al., “Influence of plate spacing and ash resistivity on the efficiency of electrostatic precipitators”, 1997, Journal of Electrostatics, Vol. 39, pp.65-81.
Oglesby, S., Jr., Nichols, G.B., “Air pollution”, A.C. Stern ed., 1977, New York; Academic Press, Vol. 4, 3rd edition.
Pantea, D., Darmstadt, H., Kaliaguine, S. et al., “Electrical conductivity of thermal carbon blacks-Influence of surface chemistry”, 2001, Carbon, Vol. 39, pp.1147-1158.
Pantea, D., Darmstadt, H., Kaliaguine, S. et al., “Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity”, 2003, Journal of Analytical and Applied Pyrolysis, Vol. 67, pp.55-76.
Patterson, R.G., White, H.J., “Handbook of air pollution technology”, S. Calvert, H.M. Englund eds., 1984, Canada; John Wiley & Sons, Ch. 6, 12.
Roy, C., Rastegar, A., Kaliaquine, S. et al., “Physicochemical properties of carbon blacks from vacuum pyrolysis of used tires”, 1995, Plastics, Rubber and Composites Processing and Applications, Vol. 23, pp.21-30.
Roy, C., Labrecque, B., Canmia, B. de, “Recycling of scrap tires to oil and carbon black by vacuum pyrolysis”, 1990, Resources, Conservation and Recycling, Vol. 4, pp.203-213.
Schmatloch, V., Rauch, S., “Design and characterization of an electrostatic precipitator for small heating appliances”, 2005, Journal of Electrostatics, Vol. 63, pp.85-100.
Strand, M., Pagels, J., Szpila, A. et al., “Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler”, 2002, Energy & Fuels, Vol. 16, pp.1499-1506.
Turner, J.H., Lawless, P.A., Yamaoto, T. et al., “Air pollution engineering manual”, A.J. Buonicore, W.T. Davis eds., 1992, New York: Van Nosterand Reinhold.
Ucar, S., Karagoz, S., Ozkan, A.R. et al., “Evaluation of two different scrap tires as hydrocarbon source by pyrolysis”, 2005, Fuel, Vol. 84, pp.1884-1892.
Willeke, K., Baron, P.A., “Aerosol measurement-principles, techniques, and applications”, 1993, New York: Van Nostrand Reinhold, ch3.
Williams, P.T., Besler, S., Taylor, D.T., “The pyrolysis of scrap automotive tyres-the influence of temperature and heating rate on product composition”, 1990, Fuel, Vol. 69, pp.1474-1482.
Ylätalo, S.I., Kauppinen, E.I., Hautanen, J. et al., “On the determination of electrostatic precipitator efficiency by differential mobility analyzer”, 1992, Journal of Aerosol Science, Vol. 23, pp.S795-S798.
Yoo, K.H., Lee, J.S., Oh, M.D., “Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipiataors”, 1997, Aerosol Science and Technology, Vol. 27, pp.308-323.
Yuan, C.S.J., Shen, T.T., “Air pollution control engineering”, L.L. Wang, N.C. Pereira eds., 2004, New Jersey: Humana Press.
Zabaniotou, A.A., Stavropoulos, G., “Pyrolysis of used automobile tires and residual char utilization”, 2003, Journal of Analytical and Applied Pyrolysis, Vol. 70, pp.711-722.
Zhuang, Y., Kim, Y.J., Lee, T.G. et al., “Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators”, 2000, Journal of Electrostatics, Vol. 48, pp.245-260.
Zukeran, A., Looy, P.C., Chakrabarti, A. et al., “Collection efficiency of ultrafine particles by an electrostatic precipitator under dc and pulse operating modes”, 1997, IEEE Industry Applications Society Annual Meeting, pp.1730-1736.
王秋森,陳時欣,「氣膠技術學」,2002,台北:新文京開發。
行政院交通部統計處,<http:// www.motc.gov.tw/hypage.cgi?HYPAGE=stat01.asp>,2007.6。
林永隆,「橡膠工業概論」,1982,台北:中央圖書出版社,增訂二版。
紀奎江編,「實用橡膠製品生產技術」,1991,北京:化學工業出版社。
望熙榮譯,C. David Cooper, F. C. Alley著,「空氣污染防制」 (air pollution control - a design approach),2005,台北:中央圖書,第五章。
郭崇文,「小型靜電集塵器電場分離之研究-交流與直流電場」,2005,台北科技大學環境規劃與管理研究所碩士論文。
黃盛修,「小型靜電集塵器之過濾及負載特性之研究」,2001,台灣大學職業醫學與工業衛生研究所博士論文。
楊萬發&#37757;,「工業污染防治手冊—靜電集塵器」,1995,台北:經濟部工業局,一版。
經濟部科技專案成果,「廢棄物化學材料資源化市場調查」,2003,台北:經濟部技術處。
資源回收基金管理委員會,<http://recycle.epa.gov.tw/result/result1.htm>,2006.9。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code