Responsive image
博碩士論文 etd-0706110-115402 詳細資訊
Title page for etd-0706110-115402
論文名稱
Title
BC2N的原子結構與力學性質
Atomic structure and mechanical properties of of BC2N
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
42
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-05-28
繳交日期
Date of Submission
2010-07-06
關鍵字
Keywords
貪婪演算法
greedy algorithm, first principle, BC2N
統計
Statistics
本論文已被瀏覽 5717 次,被下載 1045
The thesis/dissertation has been browsed 5717 times, has been downloaded 1045 times.
中文摘要
基於貪婪演算法的系統化搜尋發現 BC2N 超晶格的結構排列。使用樹狀資料結構, 我們已經獲得先前 Sun 等人發現的七種 c-BC2N 1x1x1 晶格的原子結構 [Phys. Rev. B 64, 094108 (2001)]。 而且, 將貪婪演算法應用在樹狀資料結構上, 發現在 c-BC2x2x2 , 3x3x3, 和4x4x4的超晶格上擁有最大數目碳-碳鍵結的原子結構。這些新的結構排列仍未被之前的文獻提出。在 c-BC2N 超晶格上已經搜索到512顆原子。這些原子在超晶格上的位置皆為類鑽石結構形式。並且碳原子與硼、氮原子分別形成八面體的結構。這些碳原子構成的八面體結構被{111}面所包圍著,同時每個面和鄰近硼與氮原子所構成的八面體接觸。新發現的低能量結構的電性與力學也已被分析。
Abstract
Structural motifs for the BC2N superlattices were identified from a systematic search based on a greedy algorithm. Using a tree data structure, we have retrieved seven structural models for c-BC2N 1x1x lattice which were identified previously by Sun et al. [Phys. Rev. B 64, 094108 (2001)]. Furthermore, the atomic structures with the maximum number of C-C bonds for c-BC2N 2x2x2, 3x3x3, and 4x4x4 superlattices were found by imposing the greedy algorithm in the tree data structure. This new structural motif has not been previously proposed in the literature. A total of up to 512 atoms in the c-BC2N superlattice are taken into consideration. The atoms in these superlattices are in diamond-like structural form. Furthermore, the C atoms, as well as B and N atoms, form the octahedral motif separately. The octahedral structure consisting of C is bounded with {111} facets, and each facet is interfaced to a neighboring octahedral structure consisting of B and N atoms. The electronic and mechanical properties of newly identified low energy structures were analyzed.
目次 Table of Contents
摘要 i
ABSTRACT ii
LIST OF FIGURES v
LIST OF TABLES vi
1 Introduction 1
2 Theory 3
2.1 Born-Oppenheimer approxmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Honhenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Exchange-correlation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Psuedopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Norm-Conserving pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Project augmented plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Hellman-Feynman theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Linear search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Struactural searach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Tree structure and greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Choice of fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Structural comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Results and discussions 19
3.1 Structural models and energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Ideal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Conclusions 30
References 31
參考文獻 References
[1] E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B 51, 12149 (1995).
[2] H. Sun, Seung-Hoon Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001).
[3] V. L. Solozhenko, D. Andrault, G. Fiquet, M.Mezouar, and D. C. Rubie, Appl. Phys. Lett. 78, 1385 (2001).
[4] S. N. Tkachev, V. L. Solozhenko, P. V. Zinin, M. H.Manghnani, and L. C.Ming, Phys. Rev. B 68, 052104 (2003).
[5] E. Kim, T. Pang,W.Utsumi, V. L. Solozhenko, and Y. Zhao, Phys. Rev. B 75, 184115 (2007).
[6] W. Utsumi, S. Nakano, K. Kimoto, T. Okada, M. Isshiki, T. Taniguchi, K. Funakoshi, M. Akaishi, and O. Shimomura, Proceedings of AIRAPT-18, Beijing, China, 2001 (unpublished), p. 186.
[7] Y. Zhao, D.W. He, L.L. Daemen, T.D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J.Zhang, G.Shen, J. Qian, and T.W. Zerda, J.Mater. Res. 17, 3139(2002).
[8] T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara, J.Mater. Chem. 6, 1799 (1996).
[9] H. Dong, D. He, T. S. Duffy, and Y. Zhao, Phys. Rev. B 79, 014105 (2009).
[10] S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem.Mater. 6, 2246 (1994).
[11] S. Nakano, M. Akaishi, and T. Sasaki, Chem.Mater. 13, 350 (2001).
[12] V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Diamond Relat.Mater. 10, 2228 (2001).
[13] Z. C. Pan, H. Sun, and C. F. Chen, Phys. Rev. Lett. 98, 135505 (2007).
[14] S. Chen, X. G. Gong, and S.H.Wei, Phys. Rev. Lett. 98, 015502 (2007).
[15] X. Luo, X. Guo, B. Xu, Q. Wu, Q. Hu, Z. Liu, J. He, D. Yu, Y. Tian, and H. T. Wang, Phys. Rev. B 76, 094103 (2007).
[16] Quan Li, Mei Wang, Artem R. Oganov, Tian Cui, Yanming Ma, and Guangtian Zou, J. Appl. Phys. 105, 053514 (2009).
[17] J.Maddox, Nature 335 201 (1988).
[18] A. R. Oganov and C.W. Glass, J. Chem. Phys. 124, 244704 (2006).
[19] X.F. Fan, H.Y. Wu, Z.X. Shen, Jer-Lai Kuo, Diamond and Related Materials, 18, 1278, (2009).
[20] N. L. Abraham and M.I.J. Probert, Phys. Rev. B 73, 224104 (2006).
[21] N. L. Abraham and M.I.J. Probert, Phys. Rev. B 77, 134117 (2008).
[22] Volker Blum, Gus L. W. Hart, Michael J. Walorski, and Alex Zunger, Phys. Rev. B 72, 165113 (2005).
[23] Giancarlo Trimarchi, Arthur J. Freeman, and A. Zunger, Phys. Rev. B 80, 092101 (2009).
[24] Laura Filion andMarjolein Dijkstra, Phys. Rev. E 79, 046714 (2009).
[25] Yansun Yao, John S. Tse, and Kaori Tanaka, Phys. Rev. B 77, 052103 (2008).
[26] Scott M.Woodley and Richard Catlow, NatureMaterials 7, 937(2008).
[27] TL Chan, CV. Ciobanu, F.-C. Chuang, N. Lu, C.-Z.Wang and K.-M. Ho, Nano Letters 6(2) 277 (2006).
[28] N. Lu, C.V. Ciobanu, T.L. Chan, F.C. Chuang, C.Z.Wang, and K.M.Ho, Journal of Physical Chemistry C 111, 7933 (2007).
[29] Nathan Luke Abraham, Ph. D thesis, A Genetic Algorithm for Crystal Structure Prediction, Ch. 7, (2006).
[30] M. Born and J. R. Oppenheimer, Ann. Physik, 84, 457 (1927).
[31] L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 23, 542 (1927).
[32] E. Fermi, Rend. Accad. Naz. Lincei, 6, 602 (1927).
[33] P. A. M. Dirac, Proc. Cambridge Phil. Roy. Soc. 26, 376 (1930).
[34] E. Teller, Rev.Mod. Phys. 34, 627 (1962).
[35] N. L. Balazs, Phys. Rev. 156, 42 (1967).
[36] P. Hohenberg andW. Kohn, Phys. Rev. 136, B864 (1964).
[37] W. Kohn and L. J. Sham, Phys. Rev. 140, A1135 (1965).
[38] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
[39] P. E. Blochl, Phy. Rev. B. 50, 17953 (1994).
[40] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[41] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms 2nd. edition, The MIT Press (2001).
[42] D.M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 566 (1980).
[43] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[44] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[45] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[46] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
[47] H. J.Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[48] D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).
[49] K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J. Wacker, J.L. Fye, and M.F. Jarrold, Nature 392 582 (1998).
[50] F.-C. Chuang, C.Z.Wang, and K.M. Ho, Phys. Rev. B 73 125431 (2006).
[51] F.-C. Chuang, Cristian V. Ciobanu, V. B. Shenoy, Cai-Zhuang Wang, and Kai-Ming Ho, Surf. Sci. Lett. 573, L375 (2004).
[52] 20. F.-C. Chuang, B. Liu, C.Z. Wang, T.L. Chan and K.-M. Ho, Surf. Sci. Lett. 598 L339 (2005).
[53] Diamond Demonstration Version 3.2c is publised by CRYSTAL IMPACT.
[54] Y. Zhang, H. Sun, and C. Chen, Phys. Rev. Lett. 93, 195504 (2004).
[55] D. Roundy, C. R. Krenn, Marvin L. Cohen, and J. W. Morris, Phys. Rev. Lett. 82, 2713 (1999).
[56] D. Roundy, C. R. Krenn,Marvin L. Cohen, and J.W.Morris Jr, PhilosophicalMagazine A 81, 1725-1747 (2001).
[57] Faming Gao, Julong He, Erdong Wu, Shimin Liu, Dongli Yu, Dongchun Li, Siyuan Zhang, and Yongjun Tian, Phys. Rev. Lett. 91, 015502 (2003).
[58] A. Simunek and J. Vackar, Phys. Rev. Lett. 96, 085501 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code