Responsive image
博碩士論文 etd-0706110-163156 詳細資訊
Title page for etd-0706110-163156
論文名稱
Title
摻鉻釔鋁石榴石雙纖衣晶體光纖主動元件之近場模態分析
Near-field Modal Imaging of Cr4+:YAG Double-clad Crystal Fiber Based Active Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-20
繳交日期
Date of Submission
2010-07-06
關鍵字
Keywords
摻鉻釔鋁石榴石、近場掃描式光學顯微鏡
Laser, Cr:YAG, NSOM
統計
Statistics
本論文已被瀏覽 5718 次,被下載 0
The thesis/dissertation has been browsed 5718 times, has been downloaded 0 times.
中文摘要
由於近年來光通訊頻寬需求急速增加,使得研製具有超寬頻特性之增益介質成為一重要課題。其中,以摻鉻釔鋁石榴石(Cr4+:YAG)於光通訊波段具有3 dB頻寬高達265 nm之超寬頻特性最受矚目。本實驗室已成功以共同提拉雷射加熱基座生長法(co-drawing laser-heated pedestal growth method)研製出具有波導結構、低損耗及低激發閥值(low threshold)之Cr4+:YAG雙纖衣晶體光纖(Cr4+:YAG double-clad crystal fiber; Cr4+:YAG DCF)超寬頻光源、光放大器及雷射,顯示Cr4+:YAG雙纖衣晶體光纖在未來光通訊中極具有潛力取代目前之摻鉺光纖(erbium doped fiber)。
為了進一步提升上述Cr4+:YAG DCF所研製之主動元件的效率,本論文以近場掃描光學顯微鏡(near-field scanning optical microscope; NSOM),量測位於Cr4+:YAG DCF纖心(core)之近場光譜特性,分析因纖心與內層纖衣(inner cladding)之熱膨脹係數不同所產生之應力(strain)變化分佈、螢光生命週期(fluorescence lifetime)及纖心尺寸三者之相互關係。結果顯示纖心直徑20 μm時,存在纖心所受應力趨近於0;且纖心直徑20 μm比11 μm之Cr4+螢光生命週期及幅射截面積各增加6.34%及19.17%。
此外,本論文亦首次藉由NSOM研究Cr4+:YAG DCF放大自發輻射(amplified spontaneous emission; ASE)及雷射之近場光學特性及輸出模態。結果證明當元件產生雷射輸出時,其光束品質參數M2 ~1.1,顯示Cr4+:YAG DCF雷射為一接近理想高斯光束之單模(LP01)光源,可進一步作為後續研製可調波長雷射(tunable laser)之基礎; 於ASE方面顯示,當模態數為4時,單模所佔比例約為26%;當模態數為7時,單模所佔比例快速下降至約15%,此近場模態量測結果亦可為未來將寬頻ASE光源耦合進單模光纖,提供重要參考依據。
μμ
Abstract
With the escalating demands for optical communication network system, the need for broadband gain medium in optical communication has increased. Among them, Cr4+:YAG crystal has shown an exceptionally successful broadband amplified spontaneous emission (ASE) light source that fully cover 1.2-1.6 μm range (3-dB bandwidth up to 265 nm). More recently, we demonstrated the realization of a waveguiding, low-loss, and low-threshold Cr4+:YAG double-clad crystal fiber (DCF) based ultra-broadband ASE light source, optical amplifier, and laser grown by the co-drawing laser-heated pedestal growth technique. These results demonstrate the potential of the Cr4+:YAG DCF for the replacement of the erbium doped fiber in future optical communications.

To further improve the efficiency of Cr4+:YAG DCF based active devices, here we show the difference in thermal expansion coefficients between a YAG core and an inner cladding creates a significant localized strain field by near-field scanning optical microscope (NSOM), which can result in optical confinement and provide the possibility to simultaneously alter the Cr3+ and Cr4+ fluorescence lifetime with varied core dimensions. The results indicate that There exists a nearly zero strain across the entire core with a diameter of ~20 μm, which is beneficial the higher Cr4+ fluorescence lifetime (+6.43%) and emission cross section (+19.17%) as compared with 11-μm core.

In addition, we have successfully investigated the near-field modal characteristics of Cr4+:YAG DCF laser and ASE by NSOM. The results demonstrate that the Cr4+:YAG DCF laser produced nearly a single-mode (LP01) output with diffraction-limited beam quality of M2 ~1.1; for ASE, the modal weighting of LP01 decreases from 26% to 15% as the number of modes increases from 4 to 7. The results offer a guideline not only for further fabricating Cr4+:YAG DCF tunable lasers, but for efficiently coupling a broadband ASE light source into a single-mode fiber.
目次 Table of Contents
中文摘要i
英文摘要ii
致謝iii
目錄iv
圖目錄vi
表目錄xi
第一章 緒論.1
第二章 近場掃描式光學顯微鏡之原理與架構3
2.1近場之定義3
2.2近場掃瞄式光學顯微鏡架構6
2.3近場光侷限機制7
2.4近場距離維持機制10
第三章 Cr:YAG晶體之特性14
3.1 Cr:YAG晶體14
3.2 Cr3+:YAG能階、吸收及放射光譜20
3.3 Cr4+:YAG能階、吸收及放射光譜24
3.4應力對於Cr3+及Cr4+螢光光譜之影響27
第四章 Cr:YAG雙纖衣晶體光纖之生長與檢測32
4.1雷射加熱共同提拉生長法32
4.2 Cr:YAG雙纖衣晶體光纖之成分分析39
4.3 Cr:YAG雙纖衣晶體光纖之傳輸特性.42
第五章 Cr:YAG雙纖衣晶體光纖之應力量測與分析52
5.1 Cr:YAG雙纖衣晶體光纖試片之製備52
5.2近場光學量測架構56
5.3具纖心內應力之螢光光譜特性59
5.3.1 Cr3+近場光學量測與分析59
5.3.2 Cr4+近場光學量測與分析64
5.3.3 Cr:YAG雙纖衣晶體光纖之Cr3+和Cr4+螢光比
較分析70
第六章 Cr4+:YAG雙纖衣晶體光纖主動元件之近場光學量
測與分析72
6.1 Cr4+:YAG雙纖衣晶體光纖雷射元件之製備72
6.2 Cr4+:YAG雙纖衣晶體光纖雷射之近場量測
架構76
6.3 Cr4+:YAG雙纖衣晶體光纖雷射之近場特性77
6.4 Cr4+:YAG雙纖衣晶體光纖放大自發輻射之
近場特性81
第七章 結論與未來工作85
參考文獻87
中英對照表92
參考文獻 References
[1]M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-10-nm regime,” Science 306, 2057 (2004).

[2]J. A. Xu, H. K. Mao, and P. M. Bell, “High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal,” Science 232, 1404 (1986).

[3]Y. K. Vohra, S. J. Duclos, K. E. Brister, and A. L. Ruoff, “Static pressure of 255 GPa (2.55 Mbar) by X-ray diffraction: comparison with extrapolation of the ruby pressure scale,” Physical Review Letters 61, 574 (1988).

[4]H. Liu, K. S. Lim, W. Jia, E. Strauss, and W. M. Yen, “Effect of tensile stress on the R line of Cr3+ in a sapphire fiber,” Optics Letters 13, 931 (1988).

[5]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters 29, 439 (2004).

[6]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L . Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters 30, 129 (2005).

[7]C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Optics Letters 33, 2919 (2008).

[8]E. Drescher-krasicka and J. R. Willis, “Mapping stress with ultrasound,” Nature 384, 52 (1996).

[9]A. T. Macrander, S. Krasnicki, Y. Zhong, J. Maj, and Y. S. Chu, “Strain mapping with parts-per-million resolution in synthetic type-Ib diamond plates,” Applied Physics Letters 87, 194113-1 (2005).

[10]J. A. Robinson, C. P. Puls, N. E. Staley, J. P. Stitt, M. A. Fanton, K. V. Emtsev, T. Seyller, and Y. Liu, “Raman topography and strain uniformity of large-area epitaxial graphene,” Nano Letters 9, 964 (2009).

[11]彭昌盛,宋少先,谷慶寶,”掃描探針顯微技術理論與應用”,第一版,化學工業出版社,民國九十六年。

[12]B. Hecht, B. Sick, and U. P. Wild, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” Journal of Chemical Physics 112, 7761 (2000).

[13]D. W. Pohl and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Optics Letters 20, 970 (1995).

[14]L. Novotny and B. Hecht, “Principles of nano-optics,” 1st, Cambridge University Press, Ch. 6 (2006).

[15]http://www.ntmdt.com/

[16]J. L. Caslavsky and D. J. Viechinicki, J. Master. Sci., 15, p. 1709 (1980).

[17]M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations,” Philosophical Magazine B 79, 921 (1999).

[18]H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Petermann, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics 29, 2508 (1993).

[19]S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-State Lasers 10, 92 (1991).

[20]B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991).

[21]Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics 28, 249 (2004).

[22]S. Sugano and Y. Tanabe, and H. Kamimura, “Multiplets of transition-metal ions in crystals,” Academic, New York (1970).

[23]R. C. Powell, “Physics of solid-state Laser materials,” Springer, New York (1997).

[24]B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Applied Physics B: Photophysics and Laser Chemistry 36, 195 (1985).

[25]Z. Zhang, K. T. V. Grattan, and W. Palmer, “Temperature dependences of fluorescence lifetime in Cr3+-doped insulating crystals,” Physical Review B 48, 7772 (1993).

[26]P. Kisliuk and C. A. Moore, “Radiation from the 4T2 state of Cr3+ in Ruby and Emerald,” Physical Review 160, 307 (1967).

[27]A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of Optical Society of America B 18, 1578 (2001).

[28]P. R. Wamsley and K. L. Bray, “The effect of pressure on the luminescence of Cr3+:YAG,” Journal of Luminescence 59, 11 (1994).

[29]U. Hömmerich, Y. Shenb, K. Bray, “High-pressure luminescence studies of Cr4+-doped laser materials,” Journal of Luminescence 72-74, 139 (1997).

[30]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998).

[31]C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Applied Physics Letters 26, 318 (1975).

[32]G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Applied Physics Letters 56, 108-110 (1990).

[33]L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Optics Letters 13, 877 (1988).

[34]R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science 240, 1642 (1988).

[35]張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,民國八十二年。

[36]G. Keiser, “Optical fiber communications,” 3rd ed. McGraw-Hill, Ch. 2 and Ch. 3 (2000).

[37]B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” 1st ed. John Wiley & Sons, Ch. 6 and Ch. 7 (1991).

[38]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices Part 1: Adiabaticity criteria,” IEEE Proceedings 138, 343 (1991).

[39]http://www.ntmdt-tips.com/catalog/snom.html


[40]Y. Chi, H. Yang, S. Liu, M. Li, L. Wang, and G. Zou, “Compression ratio and red shift of the R1 line for YAG : Cr,” High Pressure Research 3, 153 (1990).

[41]D. Ma, X. Zheng, Y. Xu, and Z. Zhang, “Theoretical calculations of the R1 red shift of ruby under high pressure,” Physics Letters A 115, 245 (1986).

[42]Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr31 in yttrium aluminum garnet” Physical Review B: Condensed Matter 56,10822 (1997).

[43]S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “ Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections” Physical Review B: Condensed Matter 51, 17323 (1995).

[44]M. J. Riley, E. R. Krausz, N. B. Manson, and B. Henderson, “Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG,” Physical Review B 59, 1850 (1999).

[45]H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B 49 , 15505 (1994).

[46]Y. Li, “New expressions for flat-topped light beams,” Optics Communications 206, 225 (2002).

[47]R. Borghi and M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Optics Letters 23, 313 (1998).

[48]M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite–Gaussian modes,” Applied Optics 38, 5272 (1999).

[49]http://www.physics.ncsu.edu/optics/nsom/NSOMintro.html

[50]黃光瑤,“摻鉻釔鋁石榴石晶體光纖之生長系統改良與特性研究”,頁數 11-19,25-59,2008年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.1.158
論文開放下載的時間是 校外不公開

Your IP address is 18.118.1.158
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code