Responsive image
博碩士論文 etd-0706111-224200 詳細資訊
Title page for etd-0706111-224200
論文名稱
Title
使用LCModel 分析活體氫質子磁振頻譜針對腦膿瘍病患之分類
The Categorization of Pyogenic Brain Abscesses Using in Vivo Proton MR Spectroscopy with LCModel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-06
關鍵字
Keywords
磁振頻譜、腦膿瘍、LCModel、GAVA、basis sets
magnetic resonance spectroscopy, abscesses, LCModel, basis sets, GAVA
統計
Statistics
本論文已被瀏覽 5644 次,被下載 7
The thesis/dissertation has been browsed 5644 times, has been downloaded 7 times.
中文摘要
磁振造影(Conventional magnetic resonance imaging, MRI) 具有非侵入性的特
點,因此被廣泛地應用在臨床分析的研究上,而磁振頻譜(Proton MR spectroscopy)
可以顯示更明確的損傷特徵,因此被用來幫助不同的內部病理診斷。而LCModel
是可靠又方便操作的後處理工具,在此篇論文我們將利用它來分析絕對濃度。
我們所泡的假體內含有丙氨酸、氨基酸、乳酸鹽、N-acetyl aspartate,存放於
球狀的玻璃燒杯裡。分別使用三種basis sets 搭配不同的迴訊時間(TE: echo time)
來進行實驗。我們也研究在過去十年的腦膿瘍病患,所有病患皆接受磁振造影與
磁振頻譜掃描。並根據先前文獻描述的頻譜特性來將病患分成四類。
在本論文中,使用假體實驗與GAVA 模擬來製造出basis sets 做對照。然後利
用LCModel 搭配這些basis sets 分析腦膿瘍受試者,並且與臨床診斷做比較。我們
相信利用GAVA 模擬basis sets,代謝物有較好的一致性,因此可以達到磁振頻譜
更可靠的定量。
Abstract
Conventional magnetic resonance (MR) imaging has been widely applied to clinical analysis
studies due to its non-invasive property. Proton MR spectroscopy complements conventional
MR imaging by enabling better lesion characterization. Thus, proton MR spectroscopy
is used to assist in the differential diagnosis of intracranial pathologies. LCModel
is a reliable and user-friendly post-processing tool which is used to analyse absolute concentrations
in our thesis.
Our phantom are solution of alanine (Ala), cytosolic amino acids (AAs), lactate (Lac), and
n-acetyl aspartate (NAA) in a spherical flasks of glass. We used three basis sets with difference
echo time (TE) to experiment. We also performed a retrospective study of subjects
with brain abscesses referred during a span of 10 years. All subjects underwent conventional
MR imaging and in vivo proton MR spectroscopy, and subjects are classified four
groups according to the spectrum characteristics described in the literatures.
In this thesis, phantom experiments as well as GAVA simulation are included for the basis
sets comparison. Then, abscesses subjects are analyzed by LCModel using these basis
sets and compared with clinical diagnosis. Our result shows that using GAVA simulation
as the basis sets may provide better consistency among all metabolites and thus achieve
more reliable quantification of magnetic resonance spectroscopy.
目次 Table of Contents
List of Figures iii
List of Tables v
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 In Vivo 1H MR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Phase Reversal Characteristics of J-coupled Metabolites . . . . . . . . . 6
Chapter 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.1 LCModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 GAMMA and GAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Validation by Using Phantom Studies . . . . . . . . . . . . . . . 15
3.3.2 Application- Abscess Studies . . . . . . . . . . . . . . . . . . . 17
3.3.3 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Analysis Parameter of LCModel . . . . . . . . . . . . . . . . . . 18
3.4 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Phantom Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Abscesses Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.1 Phantom Experiments . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Abscesses Studies . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
參考文獻 References
[1] M. Garg, R. K. Gupta, M. Husain, S. Chawla, J. Chawla, R. Kumar, S. B. Rao,
M. K. Misra, and K. N. Prasad. Brain abscesses: etiologic categorization with in
vivo proton mr spectroscopy. Radiology, 230(2):519–27, 2004.
[2] H. Poptani, R. K. Gupta, V. K. Jain, R. Roy, and R. Pandey. Cystic intracranial mass
lesions: possible role of in vivo mr spectroscopy in its differential diagnosis. Magn
Reson Imaging, 13(7):1019–29, 1995.
[3] S. H. Kim, K. H. Chang, I. C. Song, M. H. Han, H. C. Kim, H. S. Kang, and
M. C. Han. Brain abscess and brain tumor: discrimination with in vivo h-1 mr
spectroscopy. Radiology, 204:239–45, 1997.
[4] P. H. Lai, K. T. Li, S. S. Hsu, C. C. Hsiao, C. W. Yip, S. Ding, L. R. Yeh, and H. B.
Pan. Pyogenic brain abscess: findings from in vivo 1.5-t and 11.7-t in vitro proton
mr spectroscopy. AJNR Am J Neuroradiol, 26(2):279–88, 2005.
[5] P. H. Lai, H. H. Weng, C. Y. Chen, S. S. Hsu, S. Ding, C. W. Ko, J. H. Fu, H. L.
Liang, and K. H. Chen. In vivo differentiation of aerobic brain abscesses and necrotic
glioblastomas multiforme using proton mr spectroscopic imaging. AJNR Am J Neuroradiol,
29(8):1511–8, 2008.
[6] J. E. Jensen, S. C. Licata, D. Ongur, S. D. Friedman, A. P. Prescot, M. E. Henry, and
P. F. Renshaw. Quantification of j-resolved proton spectra in two-dimensions with
lcmodel using gamma-simulated basis sets at 4 tesla. NMR Biomed, 22(7):762–9,
2009.
[7] D. Pal, A. Bhattacharyya, M. Husain, K. N. Prasad, C. M. Pandey, and R. K. Gupta.
In vivo proton mr spectroscopy evaluation of pyogenic brain abscesses: a report of
194 cases. AJNR Am J Neuroradiol, 31(2):360–6, 2010.
[8] M. Wilson, N. P. Davies, Y. Sun, K. Natarajan, T. N. Arvanitis, R. A. Kauppinen,
and A. C. Peet. A comparison between simulated and experimental basis sets for
assessing short-te in vivo (1)h mrs data at 1.5 t. NMR Biomed, 23(10):1117–26,
2010.
[9] W. G. Proctor and F. C. Yu. The dependence of a nuclear magnetic resonance frequency
upon chemical compound. Physical Review, 77(5):717, 1950.
[10] R. A. de Graaf. In vivo NMR spectroscopy : principles and techniques 2nd. John
Wiley & Sons, 2007.
[11] C. Remy, S. Grand, E. S. Lai, V. Belle, D. Hoffmann, F. Berger, F. Esteve, A. Ziegler,
J. F. Le Bas, and A. L. Benabid. 1h mrs of human brain abscesses in vivo and in vitro.
Magn Reson Med, 34(4):508–14, 1995.
[12] K. H. Chang, I. C. Song, S. H. Kim, M. H. Han, H. D. Kim, S. O. Seong, H. W. Jung,
and M. C. Han. In vivo single-voxel proton mr spectroscopy in intracranial cystic
masses. AJNR Am J Neuroradiol, 19(3):401–5, 1998.
[13] V.P. Tikhonov and N.A.Kostromina. Pmr study of conformational changes in leucine,
isoleucine,and valine. Teoreticheskaya i Eksperimental’naya Khimiya, 13(4):496–
503, 1977.
[14] G.Rohn R.I. Ernestus F.G. Lehnhardt, C. Bock and Hoehn M. Metabolic differences
between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation.
John Wiley & Sons, 2005.
[15] T. Krishnamoorthy, V. V. Radhakrishnan, B. Thomas, E. R. Jeyadevan, G. Menon,
and S. Nair. Alanine peak in central neurocytomas on proton mr spectroscopy. Neuroradiology,
49(7):551–4, 2007.
[16] M. Hajek, M. Dezortova, and V. Komarek. 1h mr spectroscopy in patients with
mesial temporal epilepsy. MAGMA, 7(2):95–114, 1998.
[17] J. F. Horowitz and S. Klein. Lipid metabolism during endurance exercise. Am J Clin
Nutr, 72(2 Suppl):558–63, 2000.
[18] H. Stevens, C. Jakobs, A. E. de Jager, R. T. Cunningham, and J. Korf. Neuronespecific
enolase and n-acetyl-aspartate as potential peripheral markers of ischaemic
stroke. Eur J Clin Invest, 29(1):6–11, 1999.
[19] E. Andre, M. Xu, D. Yang, J. K. Siow, T. T. Yeo, Y. Xu, and C. C. Lim. Mr spectroscopy
in sinus mucocele: N-acetyl mimics of brain n-acetylaspartate. AJNR Am
J Neuroradiol, 27(10):2210–3, 2006.
[20] S.W. Provencher. LCModel and LCMgui User’s Manual. 2005.
[21] S. W. Provencher. Estimation of metabolite concentrations from localized in vivo
proton nmr spectra. Magn Reson Med, 30(6):672–9, 1993.
[22] S. W. Provencher. Automatic quantitation of localized in vivo 1h spectra with
lcmodel. NMR Biomed, 14(4):260–4, 2001.
[23] B. J. Soher, Z. Aygula, A. Maudsley, K. Young, and A. Berstein. GAVA-Users Manual
and Reference. 2008.
[24] B. J. Soher, Z. Aygula, A. Maudsley, K. Young, and A. Berstein. GAVA Installation
Manual. 2008.
[25] C.M. Huang. The quantitative investigation of lcmodel basis using gamma visual
analysis (gava) for in vivo 1h mr spectroscopy. Computer Science and Engineering,
National Sun Yat-sen, 2010.
[26] V. Govindaraju, K. Young, and A. A. Maudsley. Proton nmr chemical shifts and
coupling constants for brain metabolites. NMR Biomed, 13(3):129–53, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.147.252
論文開放下載的時間是 校外不公開

Your IP address is 3.133.147.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code