Responsive image
博碩士論文 etd-0706112-155756 詳細資訊
Title page for etd-0706112-155756
論文名稱
Title
細胞膜成份調控台灣眼鏡蛇心臟毒素膜破壞活性的作用機制
Molecular mechanism of membrane components on modulating membrane-damaging activity of Naja naja atra cardiotoxins
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
180
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-05
繳交日期
Date of Submission
2012-07-06
關鍵字
Keywords
膜破壞活性、心臟毒素、心磷脂、H抗原、鞘磷脂、微脂體
phospholipid vesicle, H-antigen, cardiolipin, cardiotoxin, membrane-damaging activity, sphingomyelin
統計
Statistics
本論文已被瀏覽 5724 次,被下載 741
The thesis/dissertation has been browsed 5724 times, has been downloaded 741 times.
中文摘要
台灣眼鏡蛇心臟毒素 (Cardiotoxins)是由60個胺基酸所組成的鹼性三指環狀蛋白質,其展現毒性主要作用目標是細胞膜,儘管台灣眼鏡蛇心臟毒素的六種異構物胺基酸序列高度相似,卻表現出不同的細胞毒性與溶血能力,因此本研究藉由觀察心臟毒素對不同脂質組成的脂質膜之作用,試圖瞭解心臟毒素對細胞的毒性原理以及細胞膜成份影響心臟毒素膜破壞活性的分子機制。我們利用微脂體並以螢光或顏色的變化觀察心臟毒素於脂質膜上作用的現象,發現脂質的飽和程度會影響心臟毒素的膜破壞活性以及膜結合構型,而飽和脂質組成的細胞膜不利於心臟毒素形成有效的膜破壞構型。同時發現心臟毒素除了以正負電荷與細胞膜結合外,亦以疏水性結合與脂質膜作用,而鞘磷脂能促進心臟毒素展現更多的膜破壞活性,並且心臟毒素的第二指環位置,在心臟毒素對含鞘磷脂的微脂體膜破壞活性的展現扮演重要角色。除了脂質外,O型血型醣基 (H抗原)亦會與心臟毒素3及心臟毒素5結合,而僅有心臟毒素3的膜破壞活性會受到H抗原抑制,與H抗原結合影響層面包括CTX3結構改變、抑制脂質膜結合量以及降低形成多聚體的能力,另一方面CTX5與H抗原結合雖然會些微改變CTX5結構,但不影響CTX5的膜破壞能力、脂質膜結合量以及形成多聚體的能力。除此之外發現脂質膜融合作用是心臟毒素造成細菌細胞膜成份微脂體膜破壞活性展現的原因,心磷脂會促進心臟毒素3的脂質膜融合能力,導致心臟毒素3對細胞膜成份含心磷脂之細菌的抗菌作用。總結上述結果,本研究對脂質飽和程度、鞘磷脂、血型醣基及細菌細胞膜組成,此四種細胞膜成份對心臟毒素的作用機制進行研究,進一步闡述心臟毒素膜破壞活性受其調控的現象,此結果有助於更全盤地瞭解心臟毒素在生物體組織扮演的角色功能並且可做為未來進行醫療應用的研究基礎。
Abstract
Naja naja atra Cardiotoxins (CTXs), basic polypeptides of 60 amino acid residues adopt a three-fingered loop-folding topology and show cytotoxicity for human tissues in targeting cell membrane. Despite having highly similar sequence, the six CTX isoforms also display different cytotoxic potencies and hemolytic activities. The goal of these studies is to explore the mechanical processes that involved in membrane-damaging activities of CTXs on vesicles composed of different cell membrane components, and to delineate the events that lead to different biological activities of CTXs. The studies were performed by estimating the color transformation of phospholipid/polydiacetylene vesicles and the fluorescence enhancement of fluorescein-labeled phospholipid/protein or fluorescein released from vesicles. It was found that vesicles consisted of unsaturated phospholipids improve membrane-damaging activity of CTXs and adopt a vital membrane-bound conformation of CTXs. In contract, the characteristic of vesicles consisted of saturated phospholipids was against CTXs adopting an essential membrane-damaging structure. It was also found that not only electrostatic force but also hydrophobic force were involved in the interaction between CTXs and membrane. Comparing with phosphatidylcholine-only vesicles, CTXs displayed higher membrane-damaging activity for the sphingomyelin-containing vesicles, and the loop2 region of CTXs play a crucial role for the membrane-damaging activity of sphingomyelin-containing vesicles. Besides, the CTX3 and CTX5 would interact with the H-antigen of blood group O red blood cells, but only the binding of CTX3 with H-antigen reduce its membrane-damaging activity for red blood cells membrane. Moreover, the fusogenicity of CTXs is responsible for the membrane-damaging activity of CTXs toward bacterial membrane-mimicking vesicles. The cardiolipin have the potency to improve the fusogenicity of CTX3, which induced the bactericidal activity toward the cardiolipin-containing bacterium.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖次 v
表次 viii
第一章 前言 1
心臟毒素蛋白 (cardiotoxin (CTX)) 1
微脂體 (liposomes) 3
圖及圖說 7
第二章 實驗材料與方法 11
I. 微脂體製備 11
II. 膜破壞活性試驗 12
III. 圓二色偏極光譜之結構分析 12
IV. CTXs形成多聚體試驗 13
V. 蛋白質結合單層大微脂體分析 (FPE) 13
VI. 蛋白質結合多層微脂體分析 14
VII. 脂質/聚聯炔 微脂體比色試驗 14
VIII. 溶血能力試驗 15
IX. 脂質膜流動性分析 16
X. 傅立葉式紅外線光譜分析 16
XI. 微脂體聚集試驗 17
XII. 脂質膜融合分析 17
XIII. 內層膜螢光能量轉移試驗 18
XIV. 酵素轉化血型醣基 18
XV. CTXs與醣基親和性分析 18
XVI. 化學修飾CTX的胺基酸殘基 19
第三章 研究目標 21
第一節 目標一 23
研究背景 23
結果與討論 25
圖及圖說 31
第二節 目標二 41
研究背景 41
結果與討論 43
圖及圖說 49
表格及說明 59
第三節 目標三 63
研究背景 63
結果與討論 65
圖及圖說 71
第四節 目標四 83
研究背景 83
結果與討論 87
圖及圖說 97
表格及說明 107
第四章 結論 109
參考文獻 113
附錄 131
參考文獻 References
Aragão, E.A., Chioato, L. and Ward, R.J. (2008) Permeabilization of E. coli K12 inner and outer membranes by bothropstoxin-I, A LYS49 phospholipase A2 from Bothrops jararacussu. Toxicon 51, 538-546.

Aripov, T.F., Gasanov, S.E., Salakhutdinov, B.A., Rozenshtein, I.A. and Kamaev, F.G. (1989) Central Asian cobra venom cytotoxins-induced aggregation, permeability and fusion of liposomes. Gen. Physiol. Biophys. 8, 459-473.

Aspholm-Hurtig, M., Dailide, G., Lahmann, M., Kalia, A., Ilver, D., Roche, N., Vikström, S., Sjöström, R., Lindén, S., Bäckström, A., Lundberg, C., Arnqvist, A., Mahdavi, J., Nilsson, U.J., Velapatiño, B., Gilman, R.H., Gerhard, M., Alarcon, T., López-Brea, M., Nakazawa, T., Fox, J.G., Correa, P., Dominguez-Bello, M.G., Perez-Perez, G.I., Blaser, M.J., Normark, S., Carlstedt, I., Oscarson, S., Teneberg, S., Berg, D.E. and Borén, T. (2004) Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519-522.

Bakrac, B., Gutierrez-Aquirre, I., Podlesek, Z., Sonnen, A.F.P., Gilbert, R.J., Macek, P., Lakey, J.H. and Anderluh, G. (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J. Biol. Chem. 283, 18665-18677.

Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J. and de Kruijff, B. (1985) Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry 24, 7101-7110.

Bilwes, A., Rees, B., Moras, D., Menez, R. and Menez, A. (1994) X-ray structure at 1.55 Å of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol. 239, 122-136.

Bougis, P., Rochat, H., Pieroni, G. and Verger, R. (1981) Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 20, 4915-4920.

Bougis, P., Rochat, H., Pieroni, G. and Verger, R. (1982) A possible orientation change of cardiotoxin molecule during its interaction with phospholipid monolayer. Toxicon 20, 187-190.

Bougis, P.E., Khelif, A. and Rochat, H. (1989) On the inhibition of [Na+, K+]-ATPases by the components of Naja mossambica mossambica venom: evidence for two distinct rat brain [Na+, K+]-ATPase activities. Biochemistry 28, 3037-3043.

Brandley, B.K. and Schnaar, R.L. (1986) Cell-surface carbohydrates in cell recognition and response. J. Leukoc. Biol. 40, 97-111.

Chen, L.W., Kao, P.H., Fu, Y.S., Hu, W.P. and Chang, L.S. (2011a) Batericidal effect of naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides 32, 1755-1763.

Chen, L.W., Kao, P.H., Fu, Y.S., Lin, S.R. and Chang, L.S. (2011b) Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. Toxicon 58, 46-53.

Chen, T.S., Chung, F.Y., Tjpng, S.C., Goh, K.S., Huang, W.N., Chien, K.Y., Wu, P.L., Lin, H.C., Chen, C.J. and Wu, W.G. (2005) Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry 44, 7414-7426.

Chiang, C.M., Chang, S.L., Lin, H.J. and Wu, W.G. (1996) The role of acidic amino acid residues in the structural stability of snake cardiotoxins. Biochemistry 35, 9177-9186.

Chien, K.Y., Huang, W.N., Jean, J.H. and Wu, W.G. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. J. Biol. Chem. 266, 3252-3259.

Chien, C.M., Yang, S.H., Chang, L.S. and Lin, S.R. (2008) Involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in cardiotoxin III-induced apoptosis in HL-60 cells. Clin. Exp. Pharmacol. Physiol. 35, 1059-1064.

Chiou, Y.L., Wang, J.J. and Chang, L.S. (2009) Effect of cholesterol on membrane-damaging activity of Naja nigricollis toxin gamma toward phospholipid vesicles. Toxicon 54, 772-778.

Chiou, Y.L., Kao, P.H., Liu, W.H., Lin, S.R. and Chang, L.S. (2010) Roles of lysine residues and N-terminal alpha-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles. Toxicon 55, 256-264.

Chiou, Y.L., Chen, Y.J., Lin, S.R. and Chang, L.S. (2011) Phospholipase A2 activity-dependent and –independent fusogenic activity of Naja nigricollis CMS-9 on switterionic and anionic phospholipid vesicles. Toxicon 58, 518-526.

Chiu, C.C., Lin, K.L., Chien, C.M., Chang, L.S. and Lin, S.R. (2009) Effects of cardiotoxin III on NF-kappaB function, proliferation, and apoptosis in human breast MCF-7 cancer cells. Oncol. Res. 17, 311-321.

Choi, J.M., Hutson, A.M., Estes, M.K. and Prasad, B.V. (2008) Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc. Natl. Acad. Sci. U.S.A. 105, 9175-9180.

Cirac, A.D., Moiset, G., Mika, J.T., Kocer, A., Salvador, P., Poolman, B., Marrink, S.J. and Sengupta, D. (2011) The molecular basis for antimicrobial activity of pore-forming cyclic peptides. Biophy. J. 100, 2422-2431.

Csordas, A. and Michl, H. (1970) Isolation and structural resolution of a haemolytically active polypeptide from the immue secretion of an European toad. Monatsh. Chem. 101, 182-189.

Cummings, J.E. and Vanderlick, T.K. (2007) Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4. Biochim. Biophys. Acta 1768, 1796-1804.

Dauplais, M., Neumann, J.M., Pinkasfeld, S., Menez, A. and Roumestand, C. (1995) An NMR study of the interaction of cardiotoxin gamma from Naja nigricollis with perdeuterated dodecylphosphocholine micelles. Eur. J. Biochem. 230, 213-220.

de Lima, D.C., Alvarez Abreu, P., de Freitas, C.C., Santos, D.O., Borges, R.O., Dos Santos, T.C., Mendes Cabral, L., Rodrigues, C.R. and Castro, H.C. (2005) Snake venom: any clue for antibiotics and CAM? Evid. Based Complement Alternat. Med. 2, 39-47.

Domingues, M.M., Castanho, M.A. and Santos, N.C. (2009) rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. Plos One 4, e8385-e8392.

Dubovskii, P.V., Lesovoy, D.M., Dubinnyi, M.A., Utkin, Y.N. and Arseniev, A.S. (2003) Interaction of the P-type cardiotoxin with phospholipid membranes. Eur. J. Biochem. 270, 2038-2046.

Dubovskii, P.V., Lesovoy, D.M., Dubinnyi, M.A., Konshina, A.G., Utkin, Y.N., Efremov, R.G. and Arseniev, A.S. (2005) Interaction of three-finger toxins with phospholipid membranes: comparison of S- and P-type cytotoxins. Biochem. J. 387, 807-815.

Efremov, R.G., Volynsky, P.E., Nolde, D.E., Dubovskii, P.V. and Arseniev, A.S. (2002) Interaction of cardiotoxin with membrane: a molecular modeling study. Biophys. J. 83, 144-153.

Epand, R.F., Mowery, B.P., Lee, S.E., Stahl, S.S., Lehrer, R.I., Gellman, S.H. and Epand, R.M. (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J. Mol. Biol. 379, 38-59.

Epand, R.F., Maloy, W.L., Ramamoorthy, A. and Epand, R.M. (2010) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49, 4076-4084.

Fletcher, J.E., Jiang, M.S., Gong, Q.H., Yudkowsky, M.L. and Wieland, S.L. (1991) Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C. Toxicon 29, 1489-1500.

Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980-21988.

Galat, A., Yang, C.C. and Blou, T.E.R. (1985) Circular dichroism study of the unfolding-refolding of a cardiotoxin from Taiwan cobra (Naja naja atra) venom. Biochemistry 24, 5678-5685.

Gatineau, E., Toma, F., Montenay-Garestier, T., Takechi, M., Fromageot, P. and Menez, A. (1987) Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry 26, 8046-8055.

Gatineau, E., Takechi, M., Bouet, F., Mansuelle, P., Rochat, H., Harvey, A.L., Montenay-Garestier, T. and Menez, A. (1990) Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry 29, 6480-6489.

Gilbert, G.E. and Arena, A.A. (1998) Unsaturated phospholipid acyl chains are required to constitute membrane binding sites for factor VIII. Biochemistry 37, 13526-13535.

Goormaghtigh, E., Cabiaux, V. and Ruysschaert, J.M. (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur. J. Biochem. 193, 409-420.

Gupta, V.R., Patel, H.K., Kostolansky, S.S., Ballivian, R.A., Eichberg, J. and Blanke, S.R. (2008) Sphingomyelin functions as a novel receptor for helicobacter pylori VacA. PLos Pathog. 23, 4:e1000073.

Gurr, M.I., Harwood, J.L. and Frayn, K.N. (2002) In: Lipid Biochemistry, fifth ed. Blackwell Science Ltd., Oxford.

Hakomori, S.I. (1999) Antigen structure and genetic basis of histo-blood group A, B, and O: their changes associated with human cancer. Biochim. Biophys. Acta 1473, 247-266.

Han, X., Steinhauer, D.A., Wharton, S.A. and Tamm, L.K. (1999) Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide. Biochemistry 38, 15052-15059.

Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A. and Rittenhouse-Olson K. (2011) Cancer vaccines and carbohydrate epitopes. Vaccine 29, 8802-8826.

Henderson, R.M., Edwardson, J.M., Geisss, N.A. and Saslowsky, D.E. (2004) Lipid raft: feeling is believing. News Physiol. Sci. 19, 39-43.

Holte, L.L., Separovic, F. and Gawrisch, K. (1996) Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 31, 199-203.

Jang, J.Y., Kumar, T.K., Jayaraman, G., Yang, P.W. and Yu, C. (1997) Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 36, 14635-14641.

Jayaraman, G., Kumar, T.K., Tsai, C.C., Srisailam, S., Chou, S.H., Ho, C.L. and Yu, C. (2000) Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra), identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci. 9, 637-646.

Kao, P.H., Wu, M.J. and Chang, L.S. (2009a) Membrane-bound conformation of Naja nigricollis toxin γ affects its membrane-damaging activity. Toxicon 53, 342-348.

Kao, P.H., Lin, S.R. and Chang, L.S. (2009b) Differential binding to phospholipid bilayers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon 54, 321-328.

Kolusheva, S., Shahal, T. and Jelinek, R. (2000a) Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicles. Biochemistry 39, 15851-15859.

Kolusheva, S., Boyer, L. and Jelinek, R. (2000b) A colorimetric assay for rapid screening of antimicrobial peptides. Nat. Biotechnol. 18, 225-227.

Kolusheva, S., Lecht, S., Derazon, Y., Jelinek, R. and Lazarvovici, P. (2008) Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane asay. Peptides 29, 1620-1625.

Koval, M. and Pagano, R.E. (1991) Intracellular transport and metabolism of sphingomyelin. Biochim. Biophys. Acta 1082, 113-125.

Lewis, R.N., McElhaney, R.N., Pohle, W. and Mantsch, H.H. (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys. J. 67, 2367-2375.

Liou, R.F., Chang, W.C., Chu, S.T. and Chen, Y.H. (1993) Snake venom cardiotoxin can rapidly induce actin polymerization in intact platelets. Biochem. J. 290 (Pt2), 591-594.

Li, P., Sun, M., Wohland, T., Yang, D., Ho, B. and Ding, J.L. (2006) Molecular mechanisms that govern the specificity of sushi peptides for gram-negative bacterial membrane lipids. Biochemistry 45, 10554-10562.

Marionneau, S., Cailleau-Thomas, A., Rocher, J., Le Moullac-Vaidye, B., Ruvoën, N., Clément, M. and Le Pendu, J. (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565-573.

Matsuzaki, K., Harada, M., Funakoshi, S., Fuji, N. and Miyajima, K. (1991) Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim. Biophys. Acta 1063, 162-170.

Ma, D., Armugam, A. and Jeyaseelan, K. (2002) Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay. Biochem. J. 366, 35-43.

Martinez, D., Otero, A., Alvarez, C., Pazos, F., Tejuca, M., Lanio, M.E., Gutierrez-Aguirre, I., Barlic, A., Iloro, I., Arrondo, J.L., Gonzalez-Manas, J.M. and Lissi, E. (2007) Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon 49, 68-81.

Minotani, N., Sekiguchi, T., Bautista, J.G. and Nosoh, Y. (1979) Basis of thermostability in pig heart lactate dehydrogenase treated with O-methylisourea. Biochim. Biophys. Acta. 581, 334-341.

Nair, D. G., Fry, B.G., Alewood, P., Kumar, P.P. and Kini, R.M. (2007) Antibacterial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem. J. 402, 93-104.

Nelson, K.L. and Buckley, J.T. (2000) Channel formation by the glycosylphosphatidylinositol-anchored protein binding toxin aerolysin is not promoted by lipid rafts. J. boil. Chem. 275, 19839-19843.

Nicol, F., Nir, S.and Szoka, Jr. F.C. (2000) Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicle. Biophys. J. 78, 818-829.

Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1-32.

Olsson, M.L., Hill, C.A., de la Vega, H., Liu, Q.P., Stroud, M.R., Valdinocci, J., Moon, S., Clausen, H., Kruskall, M.S. (2004) Universal red blood cells-enzymatic conversion of blood group A and B antigens. Transfus. Clin. Biol. 11, 33-39.

Ozawa, T., Asakawa, T., Ohta, A. and Miyagishi, S. (2007) New fluorescent probes applicable to aggregates of fluorocarbon surfactants. J. Oleo. Sci. 56, 587-593.

Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y.S., Chiang, C.M., Chi, L.M. and Wu, W.G. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. J. Biol. Chem. 272, 1484-1492.

Pande, A.H., Qin, S. and Tatulian, S.A. (2005) Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophy. J. 88, 4084-4094.

Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M. and Gratton, E. (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophy. J. 60, 179-189.

Park, S.C., Kim, J.Y., Shin, S.O., Jeong, C.Y., Kim, M.H., Shin, S.Y., Cheong, G.W., Park, Y. and Hahm, K.S. (2006) Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem. Biophys. Res. Commun. 343, 222-228.

Picard, F., Pezolet, M., Bougis, P.E. and Auger, M. (1996) Model of interaction between a cardiotoxin and dimyristoylphosphatidic acid bilayers determined by solid-state 31P NMR spectroscopy. Biophys. J. 70, 1737-1744.

Qin, S., Pande, A.H., Nemec, K.N., He, X. and Tatulian, S.A. (2005) Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A2 from studies on native and chimeric proteins. J. Biol. Chem. 280, 36773-36783.

Ray, S., Scott, J.L. and Tatulian, S.A. (2007) Effects of lipid phase transition and membrane surface charge on the interfacial activation of phospholipase A2. Biochemistry 46, 13089-13100.

Raynor, R.L., Zheng, B. and Kuo, F.J. (1991) Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca+2/calmodulin-dependent protein kinase II and synaptosomal membrane Na, K-ATPase, and Na+ pump and differentiation of HL60 cells. J. Biol. Chem. 266, 2753-2758.

Ramstedt, B. and Slotte, J.P. (2002) Membrane properties of sphingomyelins. FEBS Lett. 531, 33-37.

Reid, M.E. and Lomas-Francis, C. (2004) The blood group antigen facts bool. Elsevier Academic Press, New York.

Sivaraman, T., Kumar, T.K.S., Tu, Y.T., Peng, H.J. and Yu, C. (1999) Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability. Arch. Biochem. Biophys. 363, 107-115.

Sprong, H., van der Sluijs, P. and van Meer, G. (2001) How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504-513.

Srinivasan, V.B., Rajamohan, G., Pancholi, P., Marcon, M. and Gebreyes, W.A. (2011) Molecular cloning and functional characterization of two novel membrane fusion proteins in conferring antimicrobial resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 66, 499-504.

Stevens-Truss, R. and Hinman, C.L. (1996) Chemical modification of methionines in a cobra venom cytotoxin differentiates between lytic and binding domains. Toxicol. Appl. Pharmacol. 139, 234-242.

Stevens-Truss, R. and Hinman, C.L. (1997) Activities of cobra venom cytotoxins toward heart and leukemic T-cells depend on localized amino acid differences. Toxicon 35, 659-669.

Susi, H., Byler, D.M. and Purcell, J.M. (1985) Estimation of β-structure content of proteins by means of deconvolved FTIR spectra. J. Biochem. Biophy. Methods 11, 235-240.

Surewicz, W.K., Mantsch, H.H. and Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394.

Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 263, 786-790.

Sue, S.C., Rajan, P.K., Chen, T.S., Hsieh, C.H. and Wu, W.G. (1997) Action of Taiwan cobra cardiotoxin on membrane: binding modes of a β-sheet polypeptide with phosphatidylcholine bilayers. Biochemistry 36, 9826-9836.

Sue, S.C., Chien, K.Y., Huang, W.N., Abraham, J.K., Chen, K.M. and Wu, W.G. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673.

Tamm, L.K. and Tatulian, S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Quarter. Rev. Biophys. 30, 365-429.

Tjong, S.C., Chen, T.S., Huang, W.N., Abraham, J.K., Chen, K.M. and Wu, W.G. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673.

Tokunaga, Y., Niidome, T., Hatakeyama, T. and Aoyagi, H. (2001) Antibaterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes. J. Pept. Sci. 7, 297-304.

Tomita, T., Watanabe, M. and Yasuda, T. (1992) Influence of membrane fluidity on the assembly of staphylococcus aureus α-toxin, a channel-forming protein, in liposome membrane. J. Biol. Chem. 267, 13391-13397.

Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca+2 influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95.

van den Bogaart, G., Mika, J., Krasnikov, V. and Poolman, B. (2007) The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys. J. 93, 154-163.

Vanhoye, D., Bruston, F., El Amri, S., Ladram, A., Amiche, M. and Nicolas, P. (2004) Membrane association, electrostatic sequestration, and cytotoxicity of gly-leu-rich peptide orthologs with differing functions. Biochemistry 43, 8391-8409.

Vyas, K.A., Patel, H.V., Vyas, A.A. and Wu, W.G. (1998) Glycosaminoglyans bind to homologous cardiotoxins with different specificity. Biochemistry 37, 4527-4534.

Vernon, L.P. and Rogers, A. (1992) Effect of calcium and phosphate ion on hemolysis induced by pyrularia thionin and Naja naja kaouthia cardiotoxin. Toxicon 30, 701-709.

Wall, J., Golding, C., van Veen, M. and O’Shea, P.S. (1995) The use of fluoresceinphosphatidylethanolamine as a real-time probe for peptide-membrane interaction. Mol. Membr. Biol. 12, 181-190.

Wang, C.C., Huang, Y.L., Ren, C.T., Lin, C.W., Hung, J.T., Yu, J.C., Yu, A.L., Wu, C.Y. and Wong, C.H. (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc. Natl. Acad. Sci. USA. 105, 11661-11666.

Wang, C.H., Liu, J.H., Lee, S.C., Hsiao, C.D. and Wu, W.G. (2006) Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide-cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J. Biol. Chem. 281, 656-667.

Wang, C.H. and Wu, W.G. (2005) Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett. 579, 3169-3174.

Wu, C.Y., Liang, P.H. and Wong, C.H. (2009) New development of glycan arrays. Org. Biomol. Chem. 7, 2247-2254.

Yang, S.H., Chien, C.M., Chang, L.S. and Lin, S.R. (2008) Cardiotoxin III-induced apoptosis is mediated by Ca2+-dependent caspase-12 activation in K562 cells. J. Biochem. Mol. Toxicol. 22, 209-218.

Yawata, Y. (2003) Cell Membrane: the Red Blood Cell as a Model. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55, 27-55.

Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.

Zhang, Y.P., Gong, F., Bao, G.Q., Gao, H.W., Ji, S.P., Tan, Y.X., Li, S.B., Li, L.L., Wang, Y.L., Xu, L.J., Tian, S.G., Zhang, Z.X., Lu, Q.S., Qui, Y., Bai, J.S. and Chen, J.T. (2007) B to O erythrocyte conversion by the recombinant α-galactosidase. Chin. Med. J. 120, 1145-1150.

Zsuman, N., Miklas, T.M., Graves, T., DMBch, G.E. and Hudson, R.A. (1984) On the interaction of cobra venom protein cardiotoxins with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code