Responsive image
博碩士論文 etd-0706113-013907 詳細資訊
Title page for etd-0706113-013907
論文名稱
Title
以電漿輔助式分子束磊晶成長應用於自旋與光電子學之氮化鎵相關薄膜及其特性分析
Growth and characterization of GaN-based thin film grown by plasma-assisted molecular beam epitaxy for spintronics and optoelectronics application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-06
關鍵字
Keywords
氮化鎵微米碟、分子束磊晶、閃鋅礦氮化鎵、氮化銦鎵/氮化鎵多重量子井、氮化鋁鎵/氮化鎵高電子遷移率電晶體、半極性、量子環干涉元件
zinc-blende GaN, GaN microdisk, quantum-ring interferometer, InGaN/GaN multiple quantum wells, semi-polar, AlGaN/GaN HEMT, Molecular Beam Epitaxy
統計
Statistics
本論文已被瀏覽 5698 次,被下載 628
The thesis/dissertation has been browsed 5698 times, has been downloaded 628 times.
中文摘要
此論文將研究以電漿輔助分子束磊晶成長應用於自旋電子學與光電子學之氮化鎵系列薄膜及其特性分析。

在自旋電子學領域,我們在氮化鎵磊晶片上藉由分子束磊晶系統成長不同鋁含量之氮化鋁鎵/氮化鎵高電子遷移率電晶體並探討其表面、結構及電子傳輸等特性。藉由高品質磊晶,在4K溫度下,鋁含量為0.14及0.21的氮化鋁鎵/氮化鎵異質結構中,我們可獲得相當高的電子遷移率,在鋁含量為0.14的樣品中,電子遷移率可達20448 cm-2/Vs,其二維電子氣載子濃度為 。藉由變溫霍爾量測而得到的電子遷移率曲線可分析不同鋁含量樣品在二維電子氣中電子傳輸所受的散射機制。我們進一步將鋁含量為0.18的樣品製作為奈米線元件,並且得到在200奈米及100奈米線寬下的元件中可分別量測到2.4與1.2毫電子福特的自旋分裂。由此結果,我們引入一維彈道傳輸奈米線、自旋霍爾效應以及A-B效應而提出新式的自旋霍爾量子環干涉元件以克服傳統自旋電晶面臨的難題。

在光電子學領域中,我們可在鋁酸鋰基板上成長氮化鎵微結構。氮化鎵微結構可進一步分為薄形微米碟、釘狀及菇狀結構。我們對氮化鎵微結構做光學分析,並且驗證在氮化鎵微結構中的斜面,也就是半極性面中,有優於極化面中的發光表現。另外,我們也利用低溫微光致螢光量測探討在不同形狀的微結構中的發光躍遷機制。在以分子束磊晶系統成長氮化鎵於(100)方向矽基板的系列中,我們展示了不同面向的成長能夠藉由濺鍍的氮化鋁緩衝層所控制。而在特定成長參數下,可得到纖維鋅礦/閃鋅礦的相轉變。對於發光二極體元件,我們藉由分子束磊晶亦可得到高品質氮化銦鎵/氮化鎵多重量子井結構,並探討量子井及位障在不同成長溫度和不同成長厚度下的結構及發光表現。
Abstract
In this dissertation, we studied the growth and characterization of GaN-based thin film grown by plasma-assisted molecular beam epitaxy for spintronics and optoelectronics application.

In the spintronics applications, the AlxGa1-xN/GaN HEMT samples with varied Al composition were grown by plasma-assisted molecular beam epitaxy on GaN template. The surface morphology, structural properties and electronic properties were characterized. We obtained the highest mobility and lowest carrier concentration to be 20448 cm-2/Vs and in Al0.14Ga0.86N/GaN sample at 4K. Besides, Al0.210Ga0.790N/GaN sample with higher Al content also has great mobility as high as Al0.14Ga0.86N/GaN sample. The scattering mechanism of 2DEG transport was evaluated by temperature-dependent mobility curves. The Al0.18Ga0.82N/GaN HEMT was used to fabricate the nano-wires. The spin-splitting was obtained to be (2.4±0.3) meV and (1.2±0.3) meV for 200 nm nano-wire and100 nm nano-wire, respectively. According the result, we proposed a quantum-ring interferometer by introducing the concept of 1-D ballistic transport nano-wire, spin-Hall effect and A-B effect.

In the optoelectronic applications, we have characterized the optical properties of GaN microstructures in the shapes of microdisk, nail, and mushroom. We demonstrated that the superior luminance efficiency was observed on the oblique surfaces of mushroom-shaped GaN. Beside, the band transition mechanism of thin disk, nail-shaped and mushroom-shaped GaN was performed by low-temperature micro-PL. Moreover, we have grown the GaN layers by MBE on Si (100) substrates with sputtered AlN buffer layer. We showed with TEM images that variant kinds of GaN epitaxial planes can be grown with sputtered AlN on Si (100) substrate. It was found that zinc-blende GaN can be obtained via phase transition under certain growth condition. For LED application, the high quality InGaN/GaN MQWs has been grown by PA-MBE on GaN template.
目次 Table of Contents
Table of contents

Verification Letter (論文審定書) i

Acknowledgements (誌謝) ii

Chinese Abstract (中文摘要) iii

English Abstract iv

List of figures vii

List of tables xii

1. Introduction 1
1.1 Spintronics applications 1
1.2 Optoelectronics applications 5

2. AlxGa1-XN/GaN HEMT structures grown by PA-MBE on GaN template 9
2.1 Background 9
2.2 Growth procedure 12
2.3 Characterization of AlxGaN1-xN/GaN with various Al compositions 14
2.4 Summary 33

3. AlxGa1-XN/GaN nano-wires and AlxGa1-XN/GaN quantum-ring interferometer 35
3.1 Background 35
3.2 Fabrication process of AlxGa1-XN/GaN nano-wires 37
3.3 SdH measurement of AlxGa1-XN/GaN nano-wires 40
3.4 AlxGa1-XN/GaN quantum-ring interferometer 45
3.5 Summary 51

4. Luminescence properties of GaN microstructures grown on LiAlO2 substrate 53
4.1 Background 53
4.2 Cathodoluminescence properties of GaN microstructures 57
4.3 Photoluminescence properties of GaN microstructures 62
4.4 Summary 67

5. Growth of wurtzite and zinc-blende phased GaN on silicon (100) substrate with sputtered AlN buffer layer 69
5.1 Background 69
5.2 Experiments 71
5.3 Results and discussion 73
5.4 Summary 87

6. InGaN/GaN multiple quantum wells grown by PA-MBE on GaN template 89
6.1 Background 89
6.2 Growth procedure 90
6.3 Characterization of InGaN/GaN MQWs 93
6.4 Summary 100

7. Conclusions and future works. 101

Reference 105

Publication List 115
參考文獻 References
References:

[1] S. Nakamura, M. Senoh, N. Iwasa, S.-I. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).
[2] S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode”, 2rd ed. Ch. 10.4, (Spring-Verlag, Berlin, 2000).
[3] Ikai Lo, W.T. Wang, M. H. Gau, J.K. Tsai, S. F. Tsay, and J.-C. Chiang, Appl. Phys. Lett. 88, 082108, (2006).
[4] Ikai Lo, M. H. Gau, J. K. Tsai, Y. L. Chen, Z. J. Chang, W. T. Wang, J. C. Chiang, T. Aggerstam and S. Lourdudoss, Physical Review B 75, 245307 (2007).
[5] S.Hiyamizu, T. Mimura, T. Fuji, and K. Nanb, Appl. Phys. Lett. 37, 805 (1980).
[6] Ikai Lo, Jenn-Kai Tsai, Li-Wei Tu and Jih-Chen Chiang, “III-V Semiconductor Heterostructures: Physics and Devices”, 37-56, (Research Signpost, kerala, India, 20003).
[7] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
[8] Supriyo Datta and Biswajit Das, Appl. Phys. Lett. 56, 665 (1990).
[9] Junsaku Nitta, Tatsushi Akazaki, and Hideaki Takayanagi, Phys. Rev. Lett. 78, 1335 (1997).
[10] John Schliemann, J. Carlos Egues, and Daniel Loss, Phys. Rev. Lett. 90, 146801 (2003).
[11] X. Cartoixà, D. Z.-Y. Ting, and Y.-C. Chang, Appl. Phys. Lett. 83, 1462 (2003).
[12 Ikai Lo, W. T. Wang, M. H. Gau, J. K. Tsai, S. F. Tsay, and J. C. Chiang, Appl. Phys. Lett. 88, 082108 (2006)
[13] Ikai Lo, J. K. Tsai, W. J. Yao, P. C. Ho, Li-Wei Tu, and T. C. Chang, Phys. Rev. B. 65, 161306 (2002).
[14] H. Morkoc, and S. N. Mohammad, Science 267, 51 (1995).
[15] F. A. Ponce, and D. P. Bour, Nature 386, 351 (1997).
[16] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406, 865(2000).
[17] C.H. Hsieh, Ikai Lo, M.H. Gau, Y.L. Chen, M.C. Chou, W.Y. Pang, Y.I. Chang, Y.C. Hsu, M.W. Sham, J.C. Chiang, and J.K. Tsai, Jpn. J. Appl. Phys. 47, p.891 (2008).
[18] Ikai Lo, C.H. Hsieh, Y.L. Chen, W.Y. Pang, Y.C. Hsu, J.C. Chiang, M.C. Chou, J.K. Tsai, and D.M. Schaadt, Appl. Phys. Lett. 92, 202106 (2008).
[19] Mitch M. C. Chou, C.L. Chen, D. R. Hang, W.T. Yang, 2011, Thin Solid Film, 519, 3627 (2011).
[20] Cheng-Hung Shih, Ikai Lo, Wen-Yuan Pang, Ying-Chieh Wang, Mitch M.C. Chou, Thin Solid Films 519, 3569 (2011).
[21] R. Schuber, Y.L.Chen, C.H.Shih, T.H.Huang, P.Vincze, I.Lo, L.W.Chang, Th. Schimmel, M.M.C.Chou, D.M.Schaadt, J. Cryst. Growth 323, 76-79(2011).
[22] Cheng-Hung Shih, Teng-Hsing Huang, Ralf Schuber, Yen-Liang Chen, Liu-wen Chang, Ikai Lo, Mitch MC Chou and Daniel M Schaadt, Nanoscale Research Letters, 6,425 (2011).
[23] K. Tsubaki, N. Maeda, T. Saitoh, and N. Kobayashi, Appl. Phys. Lett. 80, 3126 (2002)
[24] K. S. Cho, Tsai-Yu Huang, Hong-Syuan Wang, Ming-Gu Lin, Tse-Ming Chen, C.-T. Liang, Y. F. Chen and Ikai Lo, Appl. Phys. Lett. 86, 222102 (2005).
[25] N. Tang, B. Shen, M. J. Wang, K. Han, Z. J. Yang, K. Xu, G. Y. Zhang, T. Lin, B. Zhu, W. Z. Zhou, and J. H. Chu, Appl. Phys. Lett. 88, 172112 (2006)
[26] Ning Tang, Bo Shen, Kui Han, Fang-Chao Lu, Fu-Jun Xu, Zhi-Xin Qin, and Guo-Yi Zhang, Appl. Phys. Lett. 93, 172113 (2008)”
[27] Ikai Lo, J. K. Tsai, M. H. Gau, Y. L. Chen, Z. J. Chang, W. T. Wang, J. C. Chiang, K. R. Wang, Chun-Nan Chen, T. Aggerstam and S. Lourdudoss, Phys. Rev. B. 75, 245325 (2006).
[28] D. J. Chadi, Phys. Rev. B 16, 790 (1977).
[29] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[30] R. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[31] Wan-Tsang Wang, C. L. Wu, S. F. Tsay, M. H. Gau, Ikai Lo, H. F. Kao, D. J. Jang, Jih-Chen Chiang, Meng-En Lee, Yia-Chung Chang, Chun-Nan Chen and H. C. Hsueh, Appl. Phys. Lett. 91, 082110 (2007).
[32] Ikai Lo, M. H. Gau, J. K. Tsai, Y. L. Chen, Z. J. Chang, W. T. Wang, and J. C. Chiang, Phys. Rev. B. 75, 245307 (2007).
[33] C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J. P. Ibbetson, S. Keller, P. M. Petroff and S. P. DenBaars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 74, 3528 (1999).
[34] M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang, and R. J. Molnar, Appl. Phys. Lett. 77, 2888 (2000).
[35] M. N. Gurusinghe, S. K. Davidsson, and T. G. Andersson, Phys. Rev. B. 72, 045316 (2005).
[36] Stephen W. Kaun, Peter G. Burke, Man Hoi Wong, Erin C. H. Kyle, Umesh K. Mishra, Appl. Phys. Lett. 101, 262102 (2012).
[37] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, J. Vac. Sci. Technol. B 21 (2) (2003).
[38] A. Asgari, S. Babanejad, and L. Faraone, Appl. Phys. Lett. 110, 113713 (2011).
[39] L. Hsu, W. Walukiewicz, J. Appl. Phys. 89, No.3 (2001).
[40] Ikai Lo, W. T. Wang, M. H. Gau, S. F. Tsay, and J. C. Chiang, Phys. Rev. B. 72, 245329 (2005)
[41] Ikai Lo, Y. L. Chen, W. Y. Pang, Y. C. Hsu, Jih-Chen Chiang, C. C. Yang, and
J. Y. Su, J. Appl. Phys. 105, 093716 (2009).
[42] Yen-Liang Chen, Thesis,
[43] Ikai Lo, Wen-Yuan Pang, Yen-Liang Chen, Yu-Chi Hsu, Jih-Chen Chiang, Wei-Hsin Lin, Wan-Ting Chiu, Jenn-Kai Tsai, and Chun-Nan Chen, Appl. Phys. Lett. 93, 132114 (2008).
[44] Jairo Sinova, Dimitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
[45] Injun Hwang, Jongseob Kim, Hyuk Soon Choi, Hyoji Choi, Jaewon Lee, Kyung Yeon Kim, Jong-Bong Park, Jae Cheol Lee, Jongbong Ha, Jaejoon Oh, Jaikwang Shin, and U-In Chung, IEEE ELECTR DEVICE L, 34, No.2, p.202 (2013).
[46] M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, Phys. Rev. Lett. 64, 1777 (1990)
[47] Tetsuya Takeuchi, Hiroshi Amano and Isamu Akasaki, Jpn. J. Appl. Phys. 39. pp.413 (2000)
[48] Troy J. BAKER, Benjamin A. HASKELL, Feng WU, James S. SPECK and Shuji NAKAMURA, Jpn. J. Appl. Phys. 45, pp. L154 (2006)
[49 P. de Mierry, N. Kriouche, M. Nemoz, S. Chenot, and G. Nataf, Appl. Phys. Lett. 96, 231918 (2010)
[50] I. Lo, C.-H. Hsieh, Y.-C. Hsu, W.-Y. Pang, and M.-C. Chou, (Cover Article) Appl. Phys. Lett. 94, 062105 (2009).
[51] I. Lo, Y.-C. Hsu, C.-H. Hsieh, W.-Y. Pang, M.-C. Chou, Y.-Liang Chen, C.-H. Shih and Y.-C. Wang, Appl. Phys. Lett. 96, 222105 (2010)
[52] M. A. Reshchikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005)
[53] M. M.C. Chou, C. Chen, J. W. Lu, C. A. Li, C. W. C. Hsu, C. Liu, J. Cryst. Growth 316 6-9 (2011)
[54] Mc Laurin, T. E. Mates, and J. S. Speck, Appl. Phys. Lett. 86 262104 (2005).
[55] J. Zou, Y. Dong, S. Zhou, Y. Sun, W. Jun, J. Zhou, T. Huang, S. Yang and H. Zhou, J. Crystal Growth 294 339 (2006).
[56] C. H. Hsu, K. P. Ip, J. W. Johnson, S. N. G. Chu, O. Kryliouk, S. J. Pearton, L. Li, B. H. T. Chai, T. J. Anderson, and F. Renb, Electrochem. Solid-State Lett. 4 6, C35-C38 (2001).
[57] W.A. Doolittle, S. Kang, T.J. KROPEWNICKI, S. STOCK, P.A. KOHL, and A.S. BROWN, J. Electron. Mater. 27 8 (1998).
[58] J.X. Zhang, H. Cheng, Y.Z. Chen, A. Uddin, Shu Yuan, S.J. Geng, S. Zhang, Surf. Coat. Tech. 198 68 (2005).
[59] V. Lebedev, J. Jinschek, U. Kaiser, B. Schroeter, and W. Richter, Appl. Phys. Lett. 7615 (2000).
[60] E. Valcheva, J. Birch, P. O. Persson, S. Tungasmita, and L. Hultman, J. Appl. Phys. 100, 123514 (2006)
[61] N. Gopalakrishnan, B.C. Shin, H.S. Lim, G.Y. Kim, Y.S. Yu, PHYSICA B 376–377 756–759 (2006)
[62] T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 5 No.6, 2234 (2008).
[63] T. Tanikawa , D.Rudolph, T.Hikosaka, Y.Honda,M.Yamaguchi,N.Sawaki, J. Cryst. Growth 310 4999 (2008).
[64] X. Ni, M. Wu, J. Lee, X. Li, A. A. Baski, Ü. Özgür, and H. Morkoc, Appl. Phys. Lett. 95 111102 (2009).
[65] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48 p.353 (1986).
[66] J. I. Hong, Y. Chang, Y. Ding, Z. L. Wang, and R. L. Snyder, Thin Solid Films 519 3608 (2011).
[67] D. C. Park, Sz. Fujita, and Sg. Fujita, Phys. Stat. Sol. (a) 176 579 (1999).
[68] H. E. Chenga, T. C. Lin, W. C. Chen, Thin Solid Films 425 85 (2003).
[69] H. Cheng, Y. Sun, J.X. Zhang, Y.B. Zhang, S. Yuan, P. Hing, J. Cryst. Growth 254 46 (2003).
[70] G.F. Iriarte, F. Engelmark, and I.V. Katardjiev, J. Mater. Res. Vol. 17 pp. 1469 (2002)
[71] S. V. Novikov, C. T. Foxon, and A. J. Kent, Phys. Status Solidi A 207, No. 6, 1277–1282 (2010)
[72] S. V. Novikov, N. Zainal, A. V. Akimov, C. R. Staddon, A. J. Kent, and C. T. Foxon, J. Vac. Sci. Technol. B 28, C3B1 (2010)
[73] S.V. Novikov, N.M. Stanton, R.P. Campion, C.T. Foxon, A.J. Kent, J. Cryst. Growth 310 3964– 3967 (2008)
[74] T. Schupp, T.Meisch, B.Neuschl, M.Feneberg, K.Thonke, K.Lischka, and D.J.As, J. Cryst. Growth 312 3235–3237(2010)
[75] G. Jacopin, L. Rigutti, L. Largeau, F. Fortuna, F. Furtmayr, F. H. Julien, M. Eickhoff, and M. Tchernycheva, J. Appl. Lett. 110, 064313 (2011)
[76] J. Renard, G. Tourbot, D. Sam-Giao, C. Bougerol, B. Daudin, and B. Gayral, Appl. Phys. Lett. 97, 081910 (2010)
[77] P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, J. Appl. Phys. 105, 013113 (2009)
[78] R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Appl. Phys. Lett. 86, 021908 (2005)
[79] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, IEEE Photonic Tech. L. 14, pp.908 (2002)
[80] C. Skierbiszewski, Z.R.Wasilewski, I.Grzegory, S.Porowski, J. Cryst. Growth 311, 1632 (2009)
[81] Hieu Pham Trung Nguyen, Kai Cui, Shaofei Zhang, Mehrdad Djavid, Andreas Korinek, Gianluigi A. Botton, and Zetian Mi, Nano Lett. 12, 1317 (2012)
[82] T. Böttcher, S. Einfeldt, V. Kirchner, S. Figge, H. Heinke, D. Hommel, H. Selke and P. L. Ryder Appl. Phys. Lett. 73, 3232 (1998)
[83] J. Bai, T. Wang, and S. Sakai, Appl. Phys. Lett. 88, 4729 (2000)
[84] S. F. Chichibu,a) A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars and T. Sota, Appl. Phys. Lett. 73, 14 (1998)
[85] Sang Kee Shee, Y.H. Kwon, J.B. Lam, G.H. Gainer, G.H. Park, S.J. Hwang, B.D. Little, and J.J. Song, J. Cryst. Growth 221, 373 (2000)
[86] Dong-Joon KIM, Yong-Tae MOON, Keun-Man SONG and Seong-Ju PARK, Jpn. J. Appl. Phys. 40, pp.3085 (2001)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code