Responsive image
博碩士論文 etd-0706113-105345 詳細資訊
Title page for etd-0706113-105345
論文名稱
Title
高分子量嵌段共聚物PS-PMMA之自組裝於薄膜下之形態之調控
Control of Film Morphologies in Self-Assembly of High-Mw PS-PMMA Block Copolymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-06
關鍵字
Keywords
微觀相分離、嵌段共聚物、自組裝、光子晶體、高分子
Photonic Crystals, Polymer, Block Copolymer, Microphase separation, Self Assembly
統計
Statistics
本論文已被瀏覽 5689 次,被下載 155
The thesis/dissertation has been browsed 5689 times, has been downloaded 155 times.
中文摘要
本篇論文研究控制高分子量嵌段共聚物PS-PMMA之自組裝於薄膜下之形態製備一維或三維光子晶體。利用TEM可觀測到高分子量PS-PMMA在塊材形態之微觀相分離層板和雙連續相結構。由於難溶PMMA溶劑(苯、甲苯和二烯乙苯)揮發過快,PS-PMMA薄膜起始形態得到是個無序形態。經過苯溶劑退火後,形態變為PMMA被PS包覆之微胞結購。相比之下,利用PS和PMMA都可溶之二氯甲烷溶劑退火後PS-PMMA薄膜可得到平躺和站立共存之層板結購。相較之前利用難溶PMMA溶劑得到無序起始形態,偏PS選擇性三氯乙烷或氯仿溶劑可得到雙連續相或層板有序微觀結構。經過PS和PMMA都可溶之二氯甲烷或二氯乙烷溶劑退火後可改善大範圍有序排列之雙連續相微觀結構。此外,使用偏PS選擇性三氯乙烷或氯仿溶劑退火可觀察由相連續相起始形態相轉換為層板結構。除了溶劑誘導微觀結構曲向,大範圍有序平躺層板結構也可成功製備於剪切應力誘導PS-PMMA厚膜下之形態。相應地,一微嵌段共聚物光子晶體可由層板結構之PS-PMMA之自組裝建立。利用溶劑蒸氣膨潤和反膨潤過程中可觀察到一微嵌段共聚物光子晶體反射波段擁有紅移或藍移現象,這顯示出有著溶劑變色效應行為。
此外,金屬離子作用於PMMA材料可應用於高分子量嵌段共聚物PS-PMMA。經過金屬複合後可增強微觀相分離強度和降低折射率差值,使得強相分離層板結構高分子量嵌段共聚物PS-PMMA之反射波段之半高寬變窄。因此,高分子量嵌段共聚物PS-PMMA利用溶劑誘導和剪切應力誘導曲向後得到有序微觀結構可成功製備於一維嵌段共聚物光子晶體。
Abstract
Control of film morphologies to generate one-dimensional (1D) or three-dimensional (3D) polymeric photonic crystals from self-assembly of high-Mw polystyrene-b-polymethylmethacrylate (PS-PMMA) block copolymers (BCPs) is conducted in this study. Microphase-separated lamellar and gyroid phases can be observed in the bulk samples of high-Mw PS-PMMA BCP by transmission electron microscopy (TEM). Disordered morphologies are observed in the as-spun PS-PMMA thin films from poor solvents for PMMA (i.e. benzene, toluene, and divinylbenzene) due to fast evaporation of solvents. After solvent annealing by benzene, PMMA micelles in a PS matrix can be obtained. By contrast, coexistence of parallel and perpendicular lamellar microstructures is found in the PS-PMMA thin film after solvent annealing by neutral dichloromethane. In contrast to as-spun disordered morphologies from PMMA poor solvents, microphase-separated bicontinuous or lamellar microstructures are observed in the as-spun PS-PMMA thin films from PS-selective 1,1,2-trichloroethane or chloroform. After solvent annealing by neutral dichloromethane or 1,2-dichloroethane, the improvement of the lateral arrangement for the gyroid phase can be found. Also, a phase transition from the as-spun bicontinuous to lamellar microstructures are obtained using PS-selective solvents such as chloroform and 1,1,2-trichloroethane for annealing. Except for solvent-induced microstructural orientation, large-area and well-oriented lamellar microstructures parallel to the substrate can be successfully carried out in the PS-PMMA thick film by shear-induced orientation. Accordingly, 1D BCP photonic crystals are fabricated from the self-assembly of the lamella-forming PS-PMMA. The red- and blue-shifting reflectivity bands of the 1D BCP photonic crystals can be stimulated by the swelling and de-swelling of the microdomain driven by solvent vapor, revealing the reversible solvatochromic behavior.
Also, the complexation of PMMA with metal salts is performed in the high-Mw PS-PMMA BCP. After complexation, the increase of segregation strength of microphase segregation and the decrease of the refractive index contrast may give rise to the formation of strong-segregated lamellar microstructures with sharp reflectivity bandwidth in the metal-complexed PS-PMMA. As a result, the solvent-responsive 1D BCP photonic reflectors with tunable bandwidth can be successfully carried out in the PS-PMMA BCP films having well-aligned microstructural orientation by solvent- and shear-induced orientation.
目次 Table of Contents
摘要 I
Abstract III
Table of Contents III
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1.1 Self-Assembly 1
1.2 Block copolymer (BCP) Self-assembly 3
1.3 Photonic Crystals 5
1.3.1 Fabrication of Photonic Crystals from BCP Self-assembly 7
1.3.2 Stimuli-Responded BCP Photonic Crystals 10
1.4 Control of Optical Reflectivity of BCP Photonic Crystals 13
1.5 Controlled Orientation of BCP Microphase Separation 16
1.5.1 Shear-induced Orientation 17
1.5.2 Substrate-induced Orientation 18
1.5.3 Solvent evaporation-induced Orientation 19
1.6 Ion-Complexation-Induced Changes in the PS-PMMA BCP 20
Chapter 2 Objectives 22
Chapter 3 Materials and Experimental Methods 24
3.1 Materials 24
3.2 Sample Preparation 24
3.2.1 Bulks Samples Preparation 24
3.2.2 Thin Film Samples Preparation 25
3.3 Microstructural Characterization 26
3.3.1 Transmission Electron Microscopy (TEM) 26
3.3.2 Grazing-incidence Ultra-small Angle X-ray Scattering (GIUSAXS) 27
Chapter 4. Results and Discussion 28
4.1 Microphase separation of High-Mw PS-PMMA BCPs in Bulk 28
4.2 Microphase separation of High-Mw PS-PMMA BCPs Thin Films 30
4.2.1 Solvent Selectivity for PS and PMMA 30
4.2.2 As-Spun Morphologies 31
4.2.3 Phase Behavior of As-spun Disordered Morphologies after Solvent Annealing 35
4.2.4 Phase Behavior of As-spun ordered Morphologies after Solvent Annealing 40
4.3 Shear-Induced Microstructural Orientation 54
4.4 Complexation of PS-PMMA BCP and Metal Salts 60
4.4.1 PS-PMMA Hybrid Thin Films 60
4.4.2 PS-PMMA Hybrid Thin Gels 64
Chapter 5 Conclusions 68
Chapter 6 Referances 70
參考文獻 References
1. Lehn, J.-M. Science 1985, 227, 849.
2. Whitesides ,G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
3. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives (VCH, Weinheim, 1995).
4. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
6. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
7. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
8. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
9. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
10. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
11. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
12. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
13. Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Phys. Rev. E.2006, 74, 021922.
14. Yablonovitch, E. Phys. Rev. Lett.1987, 58, 2059.
15. Iohn, S. Phys. Rev. Lett.1987, 58, 2486.
16. Vlasov, Y A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
17. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
18. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters 1991, 21, 1547.
19. T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 1996, 383, 699.
20. Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
21. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
22. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
23. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
24. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett.2003, 82, 3593.
25. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O Nat. Mater 2004, 3, 872.
26. Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
27. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
28. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
29. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
30. Urbas, A.’ Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
31. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer 2003, 44, 6549.
32. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
33. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
34. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton University Press: Princeton, NJ, 1995.
35. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
36. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
37. Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
38. Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
39. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P ; Russell, T. P. Science 1996, 273, 931.
40. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
41. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
42. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
43. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
44. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
45. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
46. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
47. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
48. Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
49. Ham, S.; Shin C.; Kim E.; Ryu D.Y.; Jeong U.; Russel T.P.; Hawker C.J. Macromolecules 2008, 41, 6431.
50. Martin, T. M.; Young, D. M. Polymer 2003, 44, 4747.
51. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
52. Wang, J. Y.; Chen, W.; Russell, T. P. Macromolecules 2008, 41, 4904
53. Wang, J. Y.; Chen, W.; Sievert J.D.; Russell, T. P. Langmuir 2008, 24, 3545
54. Chen, Y.; Huang, H.; Hu, Z.; He, T., Langmuir 2004, 20, 3805
55. Ho, R.M.; Tseng W.H.; Fan H.W.; Chiang Y.W.; Lin C.C.; Ko B.T.; Huang B.H. Polymer 2005,46,9362.
56. Van Krevelen, D. W. Properties of Polymers; Elsevier Scientific Publishing Company: Amsterdam, Oxford, New York, 1976.
57. Russell, T.P.; Coulon, G.; Deline, V.R.; Miller, D.C. Macromolecules 1989, 22, 4600
58. Niu, S.;Saraf, R.F. Macromolecules 2003, 36, 2428
59. Fukunaga, K.; Hashimoto, T.; Elbs, H.; Krausch, G. Macromolecules 2002, 35, 4406
60. Kim, S. H.; Misner, M. J.; Tang, L.; Gang, O.; Ocko, B. M.; Russell, T. P. Macromolecules 2006, 39, 8473.
61. Zhu, J.; Goetsch, P.; Ruzycki, N.; Campbell, C.T. J. AM. CHEM. SOC. 2007, 129, 6432
62. Russell, T. P.; Hjelm, R. P., Jr.; Seeger, P. A. Macromolecules 1990, 23, 890
63. Wang, J. Y.; Xu, T.; Leiston-Belanger, J. M.; Gupta, S.; Russell, T. P. Physical Review Letters 2006, 12, 128301.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code