Responsive image
博碩士論文 etd-0706113-123909 詳細資訊
Title page for etd-0706113-123909
論文名稱
Title
電噴霧法製備有序性氧化鋅壓電奈米柱應用於觸覺感測元件
Design and fabrication of tactile sensor device with orderly ZnO piezoelectric nanorods by electrospray ionization method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-29
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
電噴霧法、有序性氧化鋅壓電奈米柱、蕭特基、觸覺感測元件、田口法、退火熱 處理
Schottky, Zinc oxide piezoelectric nanorods, Electrospray, Taguchi, Tactual sensors
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
本研究主要係藉由電噴霧法(Electrospray ionization method),配合田口法(Taguchi method)探討出最佳化有序性氧化鋅(Zinc oxide, ZnO)壓電奈米柱之製程參數,並以5×5陣列方式,貼覆於金(Au)/矽(Si)基板上,其可應用於高溫與高壓環境中之觸覺感測元件。本研究中,針對製程中所使用的乙二醇甲醚(Methoxyethanol)與六亞甲基四胺(Hexamethyleneteramine, HMTA)重量百分比進行相關之研究探討。過程中,分別以X光射線粉末繞射儀(X-ray power diffractionmeter, XRD)、微光致螢光光譜儀(Photoluminescence, PL)以及場發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FE-SEM),分析與探討ZnO壓電奈米柱,其結晶微結構品質與發光特性。最後,再經由田口演算出最佳化的樣本,設計出5×5有序性ZnO壓電奈米柱之陣列結構,配合上下電極的結合,達到半導體材料特有之蕭特基接觸特性(Schottky),並將其應用於觸覺感測元件。從實驗結果證實,於製作ZnO壓電奈米柱過程中,隨著退火熱處理(Annealing)溫度的升高與持溫時間的增加,ZnO晶種層之XRD結晶特性與PL發光特性之強度值也會隨之升高;並且本實驗也可於水溶液成長時間14小時與溫度90℃之參數下,發現最佳高度約為3~5 um(深寬比約10)之ZnO壓電奈米柱。最後於觸覺感測元件量測部分,係利用半導體材料特有之蕭特基接觸效應,濺鍍白金(Pt)於具備ZnO壓電奈米柱之矽晶圓上做為上電極,並與下電極之5×5有序性ZnO壓電奈米柱陣列結構進行封裝,利用超音波探頭予以超音波震盪,讓上電極之Pt壓迫下電極之ZnO壓電奈米柱,使其產生相對運動而變形,進而產生電性訊號。實驗結果發現,當超音波探頭發射頻率1 MHz且距離觸覺感測元件為1 cm時,有序性ZnO壓電奈米柱之觸覺感測元件可感測出的最大輸出電壓3.3×10-2 V。
Abstract
This study mainly used Electrospray ionization method and Taguchi method to investigate the optimum process of ordered Zinc oxide piezoelectric nanorods parameters. Growing on Au/Si substrates with 5×5 arrays structure, the Zinc oxide nanorods could be applied on tactual sensors under high pressure and temperature. In this research, it investigated the percentage weight of Methoxyethanol and Hexamethy leneteramine. During the process, we used X-ray diffraction (XRD), Photoluminescence (PL) and Field emission scanning electron microscopy (FE-SEM) to analyze crystal quality in microstructure and the characteristic of luminescence of Zinc Oxide piezoelectric nanorods. Lastly, we found the optimum sample by using Taguchi method, designing 5×5 Zinc oxide piezoelectric arrays structure and combining electrodes between upper and lower ones, which led to the characteristic of Schottky especially belonged to semiconducting materials. The result can be applied on tactual sensors. From the experiments of Zinc oxide piezoelectric nanorods processing, the result showed that with higher and longer of annealing temperature and time, the ability of crystalizing on XRD and strength of PL luminescence would be higher on Zinc Oxide crystal. Furthermore, we could gain optimum height at 3~5 um of Zinc Oxide piezoelectric nanorods by adopting the process of heating water for 14 hours and with 90 degrees Celsius. Finally in tactual sensors part, we regarded it as upper electrode when sputtering Pt on silicon chips with the characteristic of Schottky that belonged to semiconducting materials, and then we packaged it with lower electrode which was equipped with Zinc Oxide piezoelectric nanorods arrays in 5×5 ordered arrays. Finally, with the ultrasonic vibrations by ultrasonic probe, Pt on upper electrode forced Zinc Oxide piezoelectric nanorods on lower one to deform, and then Zinc oxide nanorods would generate electric signal. Experiments also showed that it produced the maximal voltage of 3.3х10-2 V under the frequency of 1 MHz and distance tactual sensors is 1 cm.
目次 Table of Contents
第一章 序論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 文獻回顧 3
1.5 本文架構 13
第二章 理論基礎與原理 14
2.1 觸覺感測元件的種類與原理 14
2.2 氧化鋅之基本結構與特性 15
2.3 壓電原理 17
2.4 壓電效應與應力(變)間的關係 24
2.5 壓電本構方程式 25
2.6 製作原理 28
2.6.1 溶膠-凝膠法 28
2.6.2 電噴霧法 28
2.6.3 水溶液法 31
2.7 田口品質工程 33
2.8 觸覺感測元件之電性量測原理 35
第三章 研究方法 39
3.1 實驗架構 39
3.2 實驗設備與藥品 41
3.2.1 氧化鋅壓電奈米柱配置與成長所需之設備 41
3.2.2 電噴霧法製程所需之設備 43
3.2.3 黃光微影製程所需之設備 45
3.2.4 觸覺感測元件量測所需之設備 45
3.3 田口品質工程之規劃 46
3.4 實驗製程 49
3.4.1 Sol-gel溶液之配製 49
3.4.2 旋轉塗佈製程 49
3.4.3 電噴霧法製程 50
3.4.4 水溶液法製程 53
3.4.5 旋轉塗佈與電噴霧法之比較規劃 54
3.5實驗分析儀器 55
3.5.1 X光射線粉末繞射儀分析 55
3.5.2 微光致螢光光譜儀分析 56
3.5.3 場發射掃描式電子顯微鏡分析 58
第四章 實驗結果與討論 59
4.1 旋轉塗佈與電噴霧法之比較 60
4.1.1 X光射線粉末繞射儀分析 60
4.1.2 微光致螢光光譜儀分析 62
4.2 X光射線粉末繞射儀分析 64
4.2.1 田口品質工程L18(83)之氧化鋅晶種層 64
4.2.2 田口品質工程L18(83)之氧化鋅壓電奈米柱 68
4.3 微光致螢光光譜儀分析 70
4.3.1 田口品質工程L18(83)之氧化鋅晶種層 70
4.3.2 田口品質工程L18(83)之氧化鋅壓電奈米柱 74
4.4 場發射掃描式電子顯微鏡分析 76
4.5 能量散佈光譜儀 89
4.5.1 田口品質工程L18(83)之氧化鋅晶種層 89
4.5.2 田口品質工程L18(83)之氧化鋅壓電奈米柱 92
4.6 田口品質工程之數值分析與統計 94
4.6.1 田口品質工程之實驗結果與分析 94
4.6.2 田口品質工程之製程最佳化 96
4.6.3 田口品質工程之變異數分析 97
4.6.4 田口品質工程之最佳化實驗 98
4.7觸覺感測元件 99
4.7.1 觸覺感測元件之設計與製作 99
4.7.2 觸覺感測元件之電性量測 104
4.7.3 觸覺感測元件之力量量測 114
第五章 結論與未來展望 116
5.1 結論 116
5.2 未來展望 117
參考文獻 118
附件 127
參考文獻 References
[1] S. Sugiyama, M. Takigawa, and I. Igarashi, “Integrated piezoresistive pressure sensor with both voltage and frequency output,” Sensors and Actuators, vol. 4, pp. 113-120, 1983.
[2] A. Choujaa, N. Tirole, C. Bonjour, G. Martin, D. Hauden, P. Blind, A. Cachard, and C. Pommier, “AlN/silicon Lamb-wave microsensors for pressure and gravimetric measurements,” Sensors and Actuators A: Physical, vol. 46, pp. 179-182, 1995.
[3] A. V. Chavan and K. D. Wise, “Batch-processed vacuum-sealed capacitive pressure sensors,” Microelectromechanical Systems, Journal of, vol. 10, pp. 580-588, 2001.
[4] N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Applied Physics Letters, vol. 80, pp. 3859-3861, 2002.
[5] M. A. Fonseca, J. M. English, M. Von Arx, and M. G. Allen, “Wireless micromachined ceramic pressure sensor for high-temperature applications,” Microelectromechanical Systems, Journal of, vol. 11, pp. 337-343, 2002.
[6] 周卓明, “壓電力學,” 全華科技圖書股份有限公司, 2003.
[7] 池田拓郎, “基本壓電材料學,” 復漢出版社, 1997.
[8] L. Rowen, G. Mahairas, and L. Hood, “Sequencing the human genome,” Science, vol. 278, pp. 605-607, 1997.
[9] E. Pennisi, “The ultimate gene gizmo: humanity on a chip,” Science, vol. 302, pp. 211-211, 2003.
[10] L. Peltonen and V. A. McKusick, “Dissecting human disease in the postgenomic era,” Science, vol. 291, pp. 1224-1229, 2001.
[11] 黃德昌, “以乾濕複合蝕刻法進行微壓力感測器微小化之研究,” 國立交通大學碩士論文, 2005.
[12] C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” Electron Devices, IEEE Transactions on, vol. 27, pp. 927-930, 1980.
[13] 曹展謀, “應用於仿生機器人之可高度伸展的觸覺感測陣列,” 國立台灣大學碩士論文, 2009.
[14] M. Sergio, N. Manaresi, M. Tartagni, R. Guerrieri, and R. Canegallo, “A textile based capacitive pressure sensor,” in Sensors, 2002. Proceedings of IEEE, 2002, pp. 1625-1630.
[15] H. K. Lee, S. I. Chang, and E. Yoon, “A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment,” Microelectromechanical Systems, Journal of, vol. 15, pp. 1681-1686, 2006.
[16] H. K. Lee, S. I. Chang, S. J. Kim, K. S. Yun, E. Yoon, and K. H. Kim, “A modular expandable tactile sensor using flexible polymer,” in Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, 2005, pp. 642-645.
[17] S. I. Chang, H. K. Lee, and E. Yoon, “Flip-chip assembly on soft polymer substrate using ACP for integrating readout circuitry for modular expandable tactile sensor array,” in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. The 13th International Conference on, 2005, pp. 1969-1972.
[18] Y. Hasegawa, M. Shikida, D. Ogura, and K. Sato, “Novel type of fabric tactile sensor made from artificial hollow fiber,” in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on, 2007, pp. 603-606.
[19] J. N. Palasagaram and R. Ramadoss, “MEMS capacitive pressure sensor array fabricated using printed circuit processing techniques,” in Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005, p. 6 pp.
[20] B. Choi, S. Lee, H. R. Choi, and S. Kang, “Development of anthropomorphic robot hand with tactile sensor: SKKU Hand II,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp. 3779-3784.
[21] Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sensors and Actuators A: Physical, vol. 143, pp. 143-153, 2008.
[22] M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, Y. J. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “Design and fabrication of an artificial skin using PI-copper films,” in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on, 2007, pp. 389-392.
[23] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensors and Actuators A: Physical, vol. 142, pp. 192-195, 2008.
[24] B. T. Chia, D. R. Chang, H. H. Liao, Y. J. Yang, W. P. Shih, F. Y. Chang, and K. C. Fan, “Temperature sensor array using flexible substrate,” in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on, 2007, pp. 589-592.
[25] K. C. Fan, D. Chang, W. P. Shih, and L. Tsao, “Fabrication and characterization of electro-active polymer for flexible tactile sensing array,” Key Engineering Materials, vol. 381, pp. 391-394, 2008.
[26] W. P. Shih, L. C. Tsao, C. W. Lee, M. Y. Cheng, C. Chang, Y. J. Yang, and K. C. Fan, “Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite,” Sensors, vol. 10, pp. 3597-3610, 2010.
[27] L. C. Tsao, M. Y. Cheng, I. L. Chen, W. P. Shih, Y. J. Yang, F. Y. Chang, K. C. Fan, and S. H. Chang, “Flexible Temperature Sensor Array using Electro-Resistive Polymer Forhumanoid Artificial Skin,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 2007, pp. 2287-2290.
[28] S. L. Yu, D. R. Chang, L. C. Tsao, W. P. Shih, and P. Z. Chang, “Porous nylon with electro-active dopants as flexible sensors and actuators,” in Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on, 2008, pp. 908-911.
[29] 施文彬, 李俊霖, 李仟文, 操禮齊, 楊燿州, 范光照, “A comparison of polymer composites for development of flexible sensor array,” 中國機械工程學刊, vol. 32, pp. 267-272, 2011.
[30] K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann, “A sensor fusion approach for recognizing continuous human grasping sequences using hidden Markov models,” Robotics, IEEE Transactions on, vol. 21, pp. 47-57, 2005.
[31] O. Müller, W. J. Parak, M. G. Wiedemann, and F. Martini, “Three-dimensional measurements of the pressure distribution in artificial joints with a capacitive sensor array,” Journal of biomechanics, vol. 37, pp. 1623-1625, 2004.
[32] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique,” Materials Research Bulletin, vol. 35, pp. 39-46, 2000.
[33] Z. Fu, B. Lin, and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
[34] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” Journal of Crystal Growth, vol. 243, pp. 151-156, 2002.
[35] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,” Applied Surface Science, vol. 142, pp. 233-236, 1999.
[36] G. Fox and S. Krupanidhi, “Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films,” Journal of materials research, vol. 9, pp. 699-711, 1994.
[37] Y. Ito, K. Kushida, K. Sugawara, and H. Takeuchi, “A 100-MHz ultrasonic transducer array using ZnO thin films,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, pp. 316-324, 1995.
[38] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Materials Letters, vol. 55, pp. 67-72, 2002.
[39] Y. Wang, S. Lau, X. Zhang, H. Lee, S. Yu, B. Tay, and H. Hng, “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films,” Chemical physics letters, vol. 375, pp. 113-118, 2003.
[40] D. Baik and S. Cho, “Application of sol-gel derived films for ZnO/< i> n</i>-Si junction solar cells,” Thin Solid Films, vol. 354, pp. 227-231, 1999.
[41] B. Cheng, J. M. Russell, W. Shi, L. Zhang, and E. T. Samulski, “Large-scale, solution-phase growth of single-crystalline SnO2 nanorods,” Journal of the American Chemical Society, vol. 126, pp. 5972-5973, 2004.
[42] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, “Nanostructured fibers via electrospinning,” Advanced Materials, vol. 13, pp. 70-72, 2001.
[43] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chemistry of Materials, vol. 13, pp. 4395-4398, 2001.
[44] P. H. Hsieh, T.H. Fang, J.H. Tsai, ““Fabrication and Dynamic Characteristics of Piezoelectric Nanogenerator System with ZnO Nanorods”,” Jorunal of the Vacuum Society, vol. 22, pp. 3151-3155, 2009.
[45] Z. L. Wang, “Nanogenerators for self-powered devices and systems,” 2011.
[46] 王瑞琪, “新穎氧化鋅奈米材料的成長與光電性質,” 國立成功大學碩士論文, 2006.
[47] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in materials science, vol. 50, pp. 293-340, 2005.
[48] Z. L. Wang, “Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications,” Chinese Science Bulletin, vol. 54, pp. 4021-4034, 2009.
[49] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature,” Materials Science and Engineering: B, vol. 102, pp. 313-316, 2003.
[50] B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” Journal of the Electrochemical Society, vol. 148, pp. G110-G113, 2001.
[51] A. Hutson, “Hall effect studies of doped zinc oxide single crystals,” Physical Review, vol. 108, p. 222, 1957.
[52] D. C. Look, J. W. Hemsky, and J. Sizelove, “Residual native shallow donor in ZnO,” Physical review letters, vol. 82, pp. 2552-2555, 1999.
[53] Z. L. Wang, “Toward self-powered sensor networks,” Nano Today, vol. 5, pp. 512-514, 2010.
[54] http://www.ceramtec.cn/, (Date : 2013/07/07).
[55] A. Jaworek, A. Krupa, A. Sobczyk, M. Lackowski, T. Czech, S. Ramakrishna, S. Sundarrajan, and D. Pliszka, “Electrospray nanocoating of microfibres,” Solid State Phenomena, vol. 140, pp. 127-132, 2008.
[56] A. Ganan-Calvo, J. Davila, and A. Barrero, “Current and droplet size in the electrospraying of liquids. Scaling laws,” Journal of Aerosol Science, vol. 28, pp. 249-275, 1997.
[57] L. Loeb, A. Kip, G. Hudson, and W. Bennett, “Pulses in negative point-to-plane corona,” Physical Review, vol. 60, p. 714, 1941.
[58] D. P. Smith, “The electrohydrodynamic atomization of liquids,” Industry Applications, IEEE Transactions on, pp. 527-535, 1986.
[59] B. Vonnegut and R. L. Neubauer, “Production of monodisperse liquid particles by electrical atomization,” Journal of Colloid Science, vol. 7, pp. 616-622, 1952.
[60] S. Khan, Y. H. Doh, A. Khan, A. Rahman, K. H. Choi, and D. S. Kim, “Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors,” Current Applied Physics, vol. 11, pp. S271-S279, 2011.
[61] M. Cloupeau and B. Prunet-Foch, “Electrostatic spraying of liquids: main functioning modes,” Journal of Electrostatics, vol. 25, pp. 165-184, 1990.
[62] B. Jin, S. Im, and S. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, pp. 107-110, 2000.
[63] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chemistry of Materials, vol. 17, pp. 1001-1006, 2005.
[64] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, “Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition,” Advanced Materials, vol. 16, pp. 1661-1664, 2004.
[65] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” The Journal of Physical Chemistry B, vol. 108, pp. 3955-3958, 2004.
[66] 魏振育, “決定關鍵失效因素與解決問題算則之建構,” 國立高雄大學碩士論文, 2010.
[67] 蘇木春、張孝德, “機械學習類神經網路、模糊系統以及基因演算法則,” 全華科技圖書股份有限公司, 2003.
[68] 蘇朝墩, “品質工程,” 中華民國品質學會, 2005.
[69] 陳明佑, “利用模糊目標規劃法求解田口式多品質特性最佳化問題,” 國立成功大學碩士論文, 2002.
[70] D. A. Neamen, “Semiconductor physics and devices,” 1992, 1994.
[71] Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, pp. 242-246, 2006.
[72] 李政錡, “新型3D奈米氧化鋅能源擷取器製作,” 國立中山大學碩士論文, 2012.
[73] T. Fukuda, T. Suzuki, R. Kobayashi, Z. Honda, and N. Kamata, “Organic photoconductive device fabricated by electrospray deposition method,” Thin Solid Films, vol. 518, pp. 575-578, Nov 30 2009.
[74] A. Djurišić, Y. Leung, K. Tam, L. Ding, W. Ge, H. Chen, and S. Gwo, “Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength,” Applied Physics Letters, vol. 88, p. 103107, 2006.
[75] A. Djurišić, Y. Leung, K. Tam, Y. Hsu, L. Ding, W. Ge, Y. Zhong, K. Wong, W. Chan, and H. Tam, “Defect emissions in ZnO nanostructures,” Nanotechnology, vol. 18, p. 095702, 2007.
[76] K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, and B. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, pp. 7983-7990, 1996.
[77] B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, and D. Bahadur, “Defect‐Related Emissions and Magnetization Properties of ZnO Nanorods,” Advanced Functional Materials, vol. 20, pp. 1161-1165, 2010.
[78] A. Van Dijken, E. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” Journal of luminescence, vol. 87, pp. 454-456, 2000.
[79] 林琰騰, “氧化鋅及其鋁摻雜薄膜製備微結構與性質研究,” 國立成功大學碩士論文, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.208.203.36
論文開放下載的時間是 校外不公開

Your IP address is 18.208.203.36
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code