Responsive image
博碩士論文 etd-0706113-161319 詳細資訊
Title page for etd-0706113-161319
論文名稱
Title
CuInSe2系列硒化薄膜硫化製程及其在太陽電池之應用
Sulfurization of selenized CuInSe2-related thin films for photovoltaic applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-02
繳交日期
Date of Submission
2013-08-20
關鍵字
Keywords
硫化、薄膜太陽電池、CuInSe2、CuInSxSe2-x、硒化
CuInSe2, CuInSxSe2-x, Thin-film solar cells, Selenization, Sulfurization
統計
Statistics
本論文已被瀏覽 5705 次,被下載 685
The thesis/dissertation has been browsed 5705 times, has been downloaded 685 times.
中文摘要
在現今的社會裡,不管任何行業都須講求成本,當然在太陽能電池產業裡也不意外。而以CuInSe2薄膜太陽能電池為例,發展至今技術已成熟且有許多種做法,然而要以產品商業化為目的,硒化比共蒸鍍的方式更適用於大面積薄膜電池的製作,再者把硒換成硫也有諸多好處:1、價格便宜2、硫化後能隙提升,使開路電壓增加3、若以硫化方式能產生濃度梯度,也就是能隙會有漸進式的改變,對於元件在吸光的時候,能使光漸進的進入到薄膜內部而產生電流4、由於硫的進入使能隙提升,改善與CdS之間的能帶不連續的問題,助於電子傳遞5、因為方式是表面硫化,同時可以鈍化表面懸鍵。
本實驗探討以不同疊法之前驅層鍍製於鈉玻璃(soda-lime glass SLG)基板上,先後使用硒化或硫化的方法,甚至在硒和硫同時的氣氛下與前驅層進行反應所得之四元化合物CuInSxSe2-x。
實驗結果發現以CuInSe2(簡稱CISe)硒化薄膜無法順利的硫化,故有幾種方式使硫化效果提高:1、在CISe硒化薄膜表面額外添加150nm的Cu2Se化合物,硫化結果有助於在表面產生CuInS2(簡稱CIS),並且利用GIXRD及AES觀察到硫的濃度梯度由表面往裡面遞減,但此方式造成薄膜表面粗糙且沒辦法明顯看到有四元相的出現。2、當前驅物(SLG/In-Se/Cu-Se)疊完後在硒和硫同時的氣氛下進行反應,結果CIS對CISe的強度比增加,由XRD與GIXRD圖發現在一薄膜裡面形成兩種相(CIS與CISe),靠近表面為CIS,內部則為CISe,兩峰之間有不同Se/S比例之四元相的存在,由於有CISe當底層使薄膜與基板附著力提高、晶粒完整且表面也較平坦。3、單元素(SLG/Cu/In)疊層,在硒硫氣氛下反應,此種作法使得Se與S均勻的混合在薄膜內部,以GIXRD對薄膜做不同厚度之分析,無法看到濃度梯度存在,而XRD圖上可見一較寬波峰,以CIS為主的四元化合物存在更為明顯。可是整體薄膜結構鬆散易剝落,用SEM去觀察可發現薄膜有許多孔隙與島狀結構,在Se與S的比例調控上或疊層方式均需改進。 
在元件的製作部份,試過各種硫化反應後所得之結果,以CISe硒化薄膜搭配Cu2Se硫化的方式製作成元件,雖然有效率的表現,但卻也因為漏電流的關係使得元件特性表現上均比未硫化前差矣;單元素(SLG/Cu/In)疊層則是因薄膜易脫落而無法製作成元件。
最具硫化代表性的元件是以(SLG/In-Se/Cu-Se)疊層之方式,先在300°C硒化持溫5min,接著Se、S同開的氣氛下升溫至600°C反應10min,吸收層表面的高能隙CIS使得開路電壓比未硫化的CISe提升約0.04V,效率表現為5.13%;開路電壓0.44V;電流密度24.73(mA/cm2)及填充因子(FF)為47%為最高。
Abstract
Nowadays, controlling the cost is an important part for every industry especially for solar cell industry. Take CuIn1-xGaxSe2 (CIGSe) thin-film solar cells for example, the technology for mass production is not cost effective and still needs further development. Selenization is a two-step film formation technique far more suitable than co-evaporation to prepare the CIGSe absorber layer with the advantages of large area and high throughput for manufacturing thin-film solar cells. In this work, we focus on the study of incorporating sulfur into CuInSe2 (CISe) to form p-type CuInSySe2-y (CISSe) with a composition gradient near to n-type CdS, which may ease the lattice mismatch and band discontinuity between CISe and CdS and thus improve the junction properties. Also, the bandgap gradient may help the light absorption in the cell. To realize the formation of graded quaternary compounds, the experiments were conducted in two ways: (1) the sulfurization of selenized CISe films and (2) the annealing of the In-Se/Cu-Se precursors in the ambient containing sulfur and selenium vapors.
Our results showed that the selenized CISe films could not be converted into CISSe by sulfurization. Further experiments by overcoating a Cu2Se layer with the thickness about 150 nm on the CISe film may effectively promote the formation of CISSe when the samples were heated at 550oC in a sulfur vapor flux above 6.85x1015 atoms/cm2-sec. The sulfur gradients in the films were verified by grazing incidence X-ray diffraction and Auger electron spectroscopy. Direct synthesis of CISSe using In-Se/Cu-Se precursors had also been successfully developed in this work. The annealing ambient with a proper S/Se ratio of vapor flux was carefully controlled in order to achieve the desired composition gradient without the existence of second phases. This was a one-step processing with the advantage of simplicity for mass production. A typical process for the film prepared by this technique is the following: the In-Se/Cu-Se precursors with a predetermined Cu/In ratio was heated at 300°C for 5 min in a Se ambient and then raised to 600°C for 10 min in the ambient containing S and Se. A typical solar cell based on the absorbed layer prepared by this technique had a cell efficiency of 5.13%. An unexpectedly low open-circuit voltage (0.44 V), a relatively small short-circuit current density (24.73 mA/cm2), and the fairly low fill factor (47%) indicated that further optimization of electrical properties of the films used in the device structure will be needed.
目次 Table of Contents
目錄
致謝…………………………………………………………………………i
摘要………………………………………………………………………ii
Abstract…………………………………………………………………iv
目錄………………………………………………………………………vi
圖目錄……………………………………………………………………viii
表目錄…………………………………………………………………xii
第一章 簡介
1.1前言……………………………………………………………………1
1.2太陽能電池原理………………………………………………………1
第二章 文獻回顧
2.1CuInSe2薄膜太陽能電池發展………………………………………5
2.2CuIn(S)Se2薄膜性質…………………………………………………5
2.3CuInSe2薄膜製程……………………………………………………10
2.4元件結構及各膜層特性………………………………………………16
2.5研究動機與目的………………………………………………………18
第三章 製程機台、實驗步驟與分析儀器
3.1實驗製程系統…………………………………………………………20
3.2實驗流程與步驟………………………………………………………23
3.3各層膜製備……………………………………………………………23
3.4實驗量測儀器…………………………………………………………27
第四章 實驗結果與討論
4.1 CuInSe2硒化薄膜製程及其元件製作………………………………30
4.2 CuInSe2硒化薄膜之硫化反應及其元件製作………………………34
4.3 Cu2Se對CuInSe2硒化薄膜硫化反應之影響與元件製作………40
4.4前驅物疊層( In-Se/Cu-Se)在硒和硫的氣氛下反應與其元件特性…49
第五章 硫化反應轉換機制探討………………………………………57
第六章 結論………………………………………………………………59
參考文獻…………………………………………………………………61
附錄1……………………………………………………………………64
附錄2……………………………………………………………………69
附錄3……………………………………………………………………73
附錄4……………………………………………………………………75
參考文獻 References
1.Miguel A. Contreras, Brian Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, Rommel Noufi, Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells. Prog. Photovolt. 7, 311-316 (1999).
2.http://www.solar-international.net/article/77658-Sharp-Concentrator-Solar-Cell-Sets-New-Record.php
3.J.L.Shay,J.H.Wernick, (1975).Ternary chalcopyrite semiconductors:
growh,electronic properties,and applications,Pergamon Press,Oxford.
4.R.A. Mickelsen , W. S. Chen, Y.R. Lowe, V.E. IEEE Trans. Electron Devices, 31, p542, 1984.
5.T. Negami, Solar Energy Materials & Solar Cells, 67(2001)1-9.
6.http://www.nrel.gov/news/press/2008/574.html.
7.http://www.solar-international.net/article/77655-TSMC-Solar-announce-new-CIGS-record.php
8.R. Woodyard and G.A. Candies, Solar Cells,31(1991),297.
9.N. Chu and D. Honeman,Solar Cells,31(1991)197.
10.B. J.Stanbery, (2002). Copper indium selenides and related materials for
photovoltaic devices. Critical Reviews in Solid State & Materials Science, 27(2),73.
11.B.M.Bagol,V.K. Kapur, A. Minnick and C. Leidohlm, photovoltaic Specialists Conference, 1993., Conference Recond of the Twenty Third IEEE.
12.Yoshihiro Hamak, Thin-film solar cell:next gerenal photovoltaic and its applications, Berlin;New York:Springer,2004,p.164~169
13.F.Abou-Elfotouh, D.J. Dunlavy and T.J.Coutts;Solar cell,237,(1986),p27.
14.V. Izquierdo et al. / Thin Solid Films 516 (2008) 7021 –7025
15.JochenTitus,Hans-WernerS chock et al./Post-Deposition Sulfur incorporation into CuInSe 2 Thin Films
16.F.Yan etal.: Effects of different sulfurization conditions on the characterization of CuIn(SxSe1-x) 2 thin films
17.J. Alvarez-Garcia et al. / Thin Solid Films 431–432 (2003) 122–125
18.A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J.Haug, M. Kalin,
D. Rudmann, A. N. Tiwari, Development of Thin-film Cu(In,Ga)Se2 and
CdTe Solar Cells, Prog. Photovolt: Res. Appl, 12 p.93-111 (2004).
19.T .Chu, S .Chu, S .Lin, J .Yue, J. Electrochem, 1984. Soc. 131, 2182-2185.
20.Sung Chan Park, Doo Youl Lee, Byung Tae Ahn ,Kyung Hoon Yoon, Jinsoo Song, Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3and Cu2Se binary compounds, Solar Energy Materials & Solar Cells 69 (2001)99
21.D.J.Chakrabarti, D.E.Laughlin,: Bull., 1981, Alloy Phase Diagrams 2 305.(1981)
22.H.Okamoto, In-Se phase diagram, Journal of Phase Equilibria and Diffusion,Vol. 25 No. 2 (2004)
23.T.J. Anderson, O.D. Crisalle, S.S. Li, and P.H. Holloway, Future CIS
24.潘家叡,CuInSe2薄膜快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2009)
25.劉鈰誼,二元硒化合物預鍍層進行CIGS快速硒化製程之研究,國立中山大學材料科學研究所碩士論文 (2010)
26.劉俊平,二硒化銅銦薄膜硫化轉換製程之研究,國立中山大學材料科學研究所博士論文 (2006)
27.M.B.Engelmann M, R. W. Birkmire, Formation and analysis of graded CuIn(Se1-ySy)2 films.THIN SOLID FILMS,2001.387(1-2):p.14-17.
28.L.Stolt,J.Hedstrom,M.Ruckh,K.O.Velthaus, H.W. Schock, ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance. Appl. Phys. Lett. 62 (1993) 597
29.M. Bodeg3rd, K. Granath, L. Stolt, Thin Solid Films 361–2 (2000) 9.
30.C.-H. Chung et al. / Solar Energy Materials & Solar Cells 113 (2013) 148–152
31.E.Q.B. Macabebe et al. / Thin Solid Films 517 (2009) 2380–2382
32.徐偉志,以硒化法製作CI(G)S薄膜太陽電池,國立中山大學材料科學研究所碩士論文(2011)
33.張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大學材料科學研究所碩士論文(2005)
34.E. Saucedo et al. / Thin Solid Films 517 (2009) 2268–2271
35.Growth mechanism of CuInS2 formed by the sulfurization of thin metallic films.
36.Chemical Kinetics and Equilibrium Analysis of I-III-VI Films.
37.SHEN Jianyun,W.K.Kim et al./RARE METALS Vol.25, No.5,Oct 2006, p. 481
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code