Responsive image
博碩士論文 etd-0706114-104028 詳細資訊
Title page for etd-0706114-104028
論文名稱
Title
創新高精度鋼版印刷之微結構設計暨製程技術開發
The design and development of a novel micro-structured stencil for high precision printings
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-08-20
關鍵字
Keywords
精細印刷、黃光微影、精密電鑄、AZ4620、SU-8
Photolithography, Electroplating, High precision printings, AZ4620, SU-8
統計
Statistics
本論文已被瀏覽 5659 次,被下載 1792
The thesis/dissertation has been browsed 5659 times, has been downloaded 1792 times.
中文摘要
本研究提出創新高精度印刷之微鋼版結構製程,利用超薄多層金屬鋼版於不同基板進行印刷測試。印刷技術是目前最主要生產電路板的製程技術之一,由於其便宜且快速,於電子產業中相當重要。然而,傳統的印刷技術受到線徑與鋼版厚度的限制,使傳統印刷技術很難印刷出低於50 μm尺度之圖案。隨著科技的發展與需求,輕、薄且短小的電子產品需求越來越高,代表必須要印刷更精細圖案或是印刷薄膜。本研究除了開發製程之外,同時也進行印刷測試,藉由三種不同表面能之印刷基板,比較印墨的厚度與線寬的改變。
透過結合黃光微影與精密電鑄系統成型印刷鋼版,電鑄基板選擇便宜的市售載玻片,為了進行電鑄製程,必須要先於玻璃基板上濺鍍電鑄種子層,厚度各50 nm的鈦與金沉積於平整的玻璃基板上,使玻璃基板帶有導電特性。黃光微影部份分別使用正光阻AZ4620與負光阻SU-8,其精細且薄的入墨孔結構由AZ4620定義,而需要長時間電鑄與厚的儲墨槽結構,則利用側壁垂直性相當好SU-8光阻定義。SU-8光阻會完全覆蓋於入墨孔結構上,使第一層結構不會因二次電鑄而受到損壞,具高光穿透性的SU-8光阻使光罩的對位工作更容易進行。進行二次電鑄前,同樣利用表面電漿系統改質鍍物表面,除了提升鍍層品質外,更重要的是可以增加金屬層之間的附著力,使多層結構可以結合。最後將所有光阻去除,利用氫氟酸將鈦金屬層蝕刻,使鋼版結構脫模。
本研究之印刷鋼版,其主要結構可分為儲墨槽與入墨孔,由於入墨孔相當薄,利於印刷精細圖案,而儲墨槽的設計,提供充足與均勻的入墨情況,並且降低入墨孔所承受的印刷應力,增加印刷鋼版的使用壽命。此外,由於過於密集的入墨孔,會使鋼版結構強度下降,為了有效提升結構強度,另外添加了橋樑支架於入墨孔結構上,避免細長結構之間產生吸附效應,同時也增強了印刷鋼版的強度。
印刷結果顯示,本研究之多層結構鋼版,成功地將印刷尺度縮小至15 μm,印刷厚度僅有1 μm,印刷圖案的間距也可降至20 μm,相較於傳統印刷技術,其改善效果超過50%。從垂直線條圖案可以知道,儲墨槽確實提供均勻且穩定的入墨量,精細圖案不會因為遮蔽效應而產生斷線,改善傳統印刷技術所遇到問題。透過便宜且快速的製程,高精度的印刷鋼版有效降低印刷尺度,表現其高印刷解析度與低成本製作,相當適合應用於高科技電子產業當中。
Abstract
This work developed a novel micro-structured stencil for high precision printings. Printing technology are the major techniques for producing printing circuit board in electronic industry. Because, printing process are usually in low-cost and mass production for producing products. However, it is difficult to produce small patterns using conventional printing technique due to the limitation of the woven mesh or stencil’s thickness. Therefore, the critical dimension for typical printing process is limited between 50 µm to 100 µm. The electronic products are tending to smaller, thinner and light for the consumer market. In other words, the printing methods are tending to smaller line width, thinner printing layer and higher printing resolution. This study developed a double layer structure stencil for printing ultra-fine line and thin film on three kind substrate. Each substrate has different surface energies. The printing test result compare the printed paste width and thickness from different printing condition. To understand the influence of surface energy for printed paste.
This work successfully developed a novel process for fabricating ultra-thin stencil with a buffer reservoir utilizing the combination of AZ4620 positive photoresist (PR) and SU-8 negative PR as the electroplating molds. The fabrication process include multi- photolithography and electroplating process. A low-cost microscope glass slide was used as the substrate for producing the stencil. In order to meet the requirement for metal electroplating and structure releasing, the Ti/Au layers of 50 nm in thickness were coated on the substrate by sputtering. The injection hole is defined by the AZ4620 PR since AZ4620 can well sustain the nickel plating bath in a short electroplating time. On the contrary, the SU-8 PR can sustain long electroplating time of the nickel plating bath then prevented the first metal layer damage in second electroplating process. The high transparency of SU-8 PR also makes it easy to align the two PR plating molds. Prior to the nickel plating process, the patterned substrate was activated with CCP to enhance the surface wettability. The plasma treatment in order to further enhance the adhesion and the roughness for nickel layer. The metal structure was then released from the glass substrate using a diluted HF solution.
The buffer reservoir was used to provide the necessary strength and uniform paste extrusion. Moreover, the buffer reservoir also reduced printing pressure from the injection hole. And the bridge structure to avoid the microstructure in stiction. Improved the stencil printing lifetime.
Results showed that the developed stencil successfully printed silver paste with the pattern of around 15 μm in width and 1 μm in thickness. And the printing pitch also down to 20 μm. The complete right angle patterns confirmed that the developed stencil was capable for printing patterns with desired orientations. The blocking issued was excluded for the stencil and the printed pattern. The method develop in the present study will give substantial impact on the modern printing technology.
目次 Table of Contents
審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
符號表 xiv
簡寫表 xv
第一章 緒論 1
1.1 前言 1
1.2 印刷技術的重要性 1
1.3 印刷技術種類 2
1.3.1 網版印刷技術 2
1.3.2 鋼版印刷技術 6
1.3.3 噴墨印刷技術 10
1.3.4 滾輪印刷技術 12
1.4 印刷漿料 13
1.5 印刷基板表面能 15
1.6 論文架構 17
第二章 動機目的及原理 19
2.1 超細線寬印刷術之挑戰 19
2.1.1 網版印刷技術限制 19
2.1.2 鋼版印刷技術限制 22
2.2 研究動機與目的 23
2.3 光學微影 24
2.3.1 光阻 24
2.4 電鑄基本原理 26
2.4.1 氨基磺酸鎳 28
2.5 鋼版製作方法 29
2.6 設計原理 30
2.7 製程挑戰 31
第三章 實驗與方法 32
3.1 雙層印刷鋼版製作 32
3.1.1 LIGA-like製程 33
3.2 創新橋式輔助入墨印刷鋼版製作 36
3.3 表面電漿改質系統 39
3.4 精密電鑄系統 40
3.4.1 電鑄系統設備與鍍液配製 41
3.5 接觸角量測系統 42
3.6 表面粗糙量測儀 43
3.7 印刷器具與材料 45
3.7.1 印刷平台 45
3.7.2 刮刀與銀膠 46
3.7.3 印刷基板 47
3.8 實驗架構流程 48
第四章 實驗結果與討論 50
4.1 印刷鋼版實驗結構分析 50
4.1.1 入墨孔與儲墨槽結構 50
4.1.2 橋樑結構分析 52
4.2 接觸角量測實驗分析 54
4.2.1 基板改質電鑄結果分析 55
4.2.2 基板接觸角分析 58
4.2.3 表面電漿改質分析 61
4.3 印刷結果實驗分析 63
4.3.1 超精細圖案印刷分析 64
4.3.2 印刷銀膠線寬分析 68
4.3.3 印刷銀膠厚度分析 72
4.3.4 超小間距印刷分析 76
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 80
參考文獻 82
自述 86
附錄 87
參考文獻 References
[1] P. Jalonen, "A new concept for making fine line substrate for active component in polymer," Microelectronics journal, vol. 34, pp. 99-107, 2003.
[2] N. Chandler and S. Tyler, "Ultra-fine feature printed circuits and multi-chip modules," Microelectronics Reliability, vol. 36, pp. 393-404, 1996.
[3] T. Ogawa, T. Asai, O. Itoh, M. Hasegawa, A. Ikegami, K. Atoh, et al., "New thick-film copper paste for ultra-fine-line circuits," IEEE Transactions on Components and Manufacturing Technology, vol. 12, pp. 397-401, 1989.
[4] D. Erath, A. Filipović, M. Retzlaff, A. K. Goetz, F. Clement, D. Biro, et al., "Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 94, pp. 57-61, 2010.
[5] M. Ju, Y.-J. Lee, J. Lee, B. Kim, K. Ryu, K. Choi, et al., "Double screen printed metallization of crystalline silicon solar cells as low as 30μm metal line width for mass production," Solar Energy Materials and Solar Cells, vol. 100, pp. 204-208, 2012.
[6] S. Pranonsatit and S. Lucyszyn, "Micromachined screen printing (MaSPrint) technology for RF MEMS applications," High Frequency Postgraduate Student Colloquium, pp. 3-6, 2005.
[7] T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, "Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA," Biosensors and Bioelectronics, vol. 24, pp. 2077-2084, 2009.
[8] M. Kšnig, M. Deckelmann, A. Henning, R. Hoenig, F. Clement, and M. Hšrteis, "Dual Screen Printing Featuring Novel Framed Busbar Screen Layout and Non-Contacting Ag Busbar Paste," Energy Procedia, vol. 27, pp. 510-515, 2012.
[9] G. E. Jabbour, R. Radspinner, and N. Peyghambarian, "Screen printing for the fabrication of organic light-emitting devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 769-773, 2001.
[10] J. Pan, G. L. Tonkay, and A. Quintero, "Screen printing process design of experiments for fine line printing of thick film ceramic substrates," Journal of Electronics Manufacturing, vol. 9, p. 203, 1999.
[11] Y. Yen, T. Fang, and Y. Lin, "Optimization of screen-printing parameters of SN9000 ink for pinholes using Taguchi method in chip on film packaging," Robotics and Computer-Integrated Manufacturing, vol. 27, pp. 531-537, 2011.


[12] D. Kim, S. Ryu, D. Shin, J. Shin, J. Jeong, H.-J. Kim, et al., "The fabrication of front electrodes of Si solar cell by dispensing printing," Materials Science and Engineering: B, vol. 177, pp. 217-222, 2012.
[13] H. Hayashi, K. Honda, I. Sumita, U. Itoh, M. Yoshida, and H. Tokuhisa, "Preferable opening area of screen mesh to print fine finger electrode with less-bumpy surface," Photovoltaic Specialists Conference, pp.2158-2160, 2012.
[14] C. Park, T. Kwon, B. Kim, J. Lee, S. Ahn, M. Ju, et al., "Front-side metal electrode optimization using fine line double screen printing and nickel plating for large area crystalline silicon solar cells," Materials Research Bulletin, vol. 47, pp. 3027-3031, 2012.
[15] D. Schwanke, J. Pohlner, A. Wonisch, T. Kraft, and J. Geng, "Enhancement of fine line print resolution due to coating of screen fabrics," Journal of Microelectronics and Electronic Packaging, vol. 6, p. 13, 2009.
[16] S. Vasudivan and W. Zhiping, "Fine line screen printed electrodes for polymer microfluidics," Electronics Packaging Technology Conference, pp. 89-93, 2010.
[17] R. Kay and M. Desmulliez, "A review of stencil printing for microelectronic packaging," Soldering & Surface Mount Technology, vol. 24, pp. 38-50, 2012.
[18] T.-N. Tsai, "Improving the fine-pitch stencil printing capability using the Taguchi method and Taguchi fuzzy-based model," Robotics and Computer-Integrated Manufacturing, vol. 27, pp. 808-817, 2011.
[19] L. Li and P. Thompson, "Stencil printing process development for flip chip interconnect," IEEE Transactions on Electronics Packaging Manufacturing, vol. 23, pp. 165-170, 2000.
[20] J. Pan, G. L. Tonkay, R. H. Storer, R. M. Sallade, and D. J. Leandri, "Critical variables of solder paste stencil printing for micro-BGA and fine-pitch QFP," IEEE Transactions on Electronics Packaging Manufacturing, vol. 27, pp. 125-132, 2004.
[21] R. Lathrop, "Solder paste printing and stencil design considerations for wafer bumping," 29th International IEEE CPMT SEMI on Electronics Manufacturing Technology Symposium, pp. 229-237, 2004.
[22] O. Krammer, L. M. Molnár, L. Jakab, and A. Szabó, "Modelling the effect of uneven PWB surface on stencil bending during stencil printing process," Microelectronics Reliability, vol. 52, pp. 235-240, 2012.
[23] S. Bhat, G. Rao, N. Dinesh, and B. Baliga, "Photo-Defined Electrically Assisted Etching Method for Metal Stencil Fabrication," IEEE Transactions on Components Packaging and Manufacturing Technology, pp. 1116-1121, 2011.


[24] J. Yang, J. Cai, et al., "Study of stencil printing technology for fine pitch flip chip bumping," International Conference on ICEPT-HDP 9th Electronic Packaging Technology & High Density Packaging, pp. 900-905, 2009.
[25] J. Hoornstra, H. de Moor, A. Weeber, and P. Wyers, "Improved front side metallization on silicon solar cells with stencil printing," Photovoltaic Solar Energy Conference and Exhibition, p.5-9, 2000.
[26] T. Yang, T.-N. Tsai, and J. Yeh, "A neural network-based prediction model for fine pitch stencil-printing quality in surface mount assembly," Engineering Applications of Artificial Intelligence, vol. 18, pp. 335-341, 2005.
[27] J. Kloeser, K. Heinricht, K. Kutzner, E. Jung, A. Ostmann, and H. Reichl, "Fine pitch stencil printing of Sn/Pb and lead free solders for flip chip technology," IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 21, pp. 41-50, 1998.
[28] D. Manessis, R. Patzelt, A. Ostmann, R. Aschenbrenner, H. Reichl, J. Wiese, et al., "Technological advancements in Lead-free Wafer Bumping using Stencil Printing Technology," European Microelectronics and Packaging Conference, pp. 427-433, 2005.
[29] G. Jackson, M. Hendriksen, R. Kay, M. Desmulliez, R. Durairaj, and N. Ekere, "Sub process challenges in ultra fine pitch stencil printing of type-6 and type-7 Pb-free solder pastes for flip chip assembly applications," Soldering & Surface Mount Technology, vol. 17, pp. 24-32, 2005.
[30] W. E. Coleman , "Step stencils," Global SMT & Packaging, 2006.
[31] Y. Tsuru, M. Nomura, and F. Foulkes, "Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath," Journal of Applied Electrochemistry, vol. 32, pp. 629-634, 2002.
[32] Y. Tsuru, M. Nomura, and F. Foulkes, "Effects of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating from a nickel sulfamate bath," Journal of Applied Electrochemistry, vol. 30, pp. 231-238, 2000.
[33] J. Dini and H. Johnson, "The influence of nickel sulfamate operating parameters on the impurity content and properties of electrodeposits," Thin Solid Films, vol. 54, pp. 183-188, 1978.
[34] R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, and R. M. Smith, "Recent developments in the electrodeposition of nickel and some nickel-based alloys," Journal of Applied Electrochemistry, vol. 36, pp. 957-972, 2006.
[35] J. Mearig and B. Goers, "An overview of manufacturing BGA technology." Seventeenth IEEE/CPMT International in Electronics Manufacturing Technology Symposium, pp. 434-437, 1995.
[36] J. Chen and K. D. Wise, "A high-resolution silicon monolithic nozzle array for inkjet printing," IEEE Transactions on Electron Device, vol.44, pp.401-409, 1997.
[37] H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, et al., "High-resolution inkjet printing of all-polymer transistor circuits," Science, vol. 290, pp. 2123-2126, 2000.
[38] J.-D. Lee, J.-B. Yoon, J.-K. Kim, H.-J. Chung, C.-S. Lee, H.-D. Lee, et al., "A thermal inkjet printhead with a monolithically fabricated nozzle plate and self-aligned ink feed hole," Micro Electro Mechanical Systems, Journal of, vol. 8, pp. 229-236, 1999.
[39] L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, et al., "Inkjet Printing High‐Resolution, Large‐Area Graphene Patterns by Coffee‐Ring Lithography," Advanced Materials, vol. 24, pp. 436-440, 2012.
[40] T. H. Van Osch, J. Perelaer, A. W. de Laat, and U. S. Schubert, "Inkjet printing of narrow conductive tracks on untreated polymeric substrates," Advanced Materials, vol. 20, pp. 343-345, 2008.
[41] M. Pudas, J. Hagberg, and S. Leppävuori, "Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications," Journal of the European Ceramic Society, pp. 43-50, 2004.
[42] http://www.metallizationworkshop.eu/fileadmin/docs/presentations2011
[43] http://www.clean.cise.columbia.edu/process/p4000vfr1.pdf.
[44] http://www.microchem.com/products/pdf/SU8_50-100.pdf.
[45] B. Bohl, R. Steger, R. Zengerle, and P. Koltay, "Multi-layer SU-8 lift-off technology for microfluidic devices," Journal of Micromechanics and Microengineering, vol. 15, p. 1125, 2005.
[46] A. Mata, A. Fleischman, and S. Roy, "Fabrication of multi-layer SU-8 microstructures," Journal of Micromechanics and Microengineering, vol. 16, p. 276, 2006.
[47] H. Keramati, J. Miao, and W. Chan, "Fabrication of five-layer three-dimensional miniature SU-8 axial fans using ultraviolet lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 10, pp. 1-6, 2011.
[48] N. Das, "Release of multi-layer metal structure in MEMS devices by dry etching technique," Solid-State Electronics, vol. 46, pp. 501-504, 2002.
[49] B. Parvais, A. Pallandre, A. M. Jonas, and J.-P. Raskin, "Liquid and vapor phase silanes coating for the release of thin film MEMS," IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 250-254, 2005.
[50] J. Li, et al., "Fabrication of metallic micromirror using electroplating technology," Microsystem technologies, vol. 17, pp. 1671-1674, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code