Responsive image
博碩士論文 etd-0706114-153534 詳細資訊
Title page for etd-0706114-153534
論文名稱
Title
新穎高轉換效率薄膜異質接面太陽能電池之最佳化設計
Optimized Design of Novel High Conversion Efficiency Thin Film Heterojunction Solar Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
薄膜太陽能電池、高轉換效率、非晶矽、非晶矽鍺
Thin Film Solar Cell, Amorphous Silicon, High Conversion Efficiency, Amorphous Silicon Germanium
統計
Statistics
本論文已被瀏覽 5661 次,被下載 37
The thesis/dissertation has been browsed 5661 times, has been downloaded 37 times.
中文摘要
本篇論文提出一系列非晶矽/非晶矽鍺結構太陽能電池(a-Si:H/a-SiGe Solar Cell),是將非晶矽鍺插入於傳統平面非晶矽PIN太陽能電池的不同接面中而形成了「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / n-a-Si:H」、「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / n-a-Si:H」、「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」以及「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / i3-a-Si:H / n-a-Si:H」等新太陽能電池結構。針對傳統平面非晶矽太陽能電池而言,由於其非晶矽能隙比較大(1.7~1.9 eV)且有較強的光吸收係數等優點,可以將其吸收層厚度做得比較薄進而減少成本,非常適合於可攜式物品或其他產品的整合上。但也因為非晶矽的高能隙,造成在長波段區域的光無法被有效吸收,轉換效率也就無法進一步的被提升。為了要增加其在長波長的吸收,我們將其分別插入了一層或兩層非晶矽鍺,因為非晶矽鍺擁有較窄的能隙(1.1~1.7 eV),可以對長波段的光進行較有效地進行吸收,並且可產生較多的載子以提升短路電流密度(Current Density, Jsc),進而提升了轉換效率。此新設計的非晶矽/非晶矽鍺異質接面太陽能電池都有明顯比傳統的非晶矽太陽能電池高的電流密度。同時,此新非晶矽/非晶矽鍺太陽能電池的轉換效率可以高達16.29 %,這是目前薄膜太陽能電池所能達到的最高轉換效率。另外,為了要再次提升轉換效率,我們將「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」太陽能電池結合了柱狀陣列結構,並使用模擬軟體進行最佳化的設計,結果我們發現在相同的太陽能電池結構下,此柱狀陣列結構相較於平面結構可再提升約4.76 %的轉換效率。
Abstract
In this paper, we propose a series of amorphous silicon (a-Si) and amorphous silicon germanium (a-SiGe) heterojunction solar cells. The a-SiGe is inserted into the different junction of the conventional planar a-Si PIN solar cells thus the new different structures of solar cell,「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / n-a-Si:H」、「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / n-a-Si:H」、「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」and 「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / i3-a-Si:H / n-a-Si:H」 are formed. Concerning that the conventional a-Si:H p-i-n structure has the high energy gap (1.7~1.9 eV) and high absorption coefficient,, the absorption layer thickness thus can be reduced for further reducing the cost. However, the high energy gap of a-Si:H cannot absorb long-wavelength of light so that the power conversion efficiency cannot be improved. In order to increase the long-wavelength absorption, we insert one or two layers of a-SiGe absorption layers into the conventional PIN counterpart due to the narrow energy gap (1.1~1.7 eV) of a-SiGe. The long-wavelength light can thus be more effectively absorbed and generate more carriers to increase the short-circuit current density (JSC). Therefore, the power conversion efficiency can be enhanced dramatically. The new designed a-Si/a-SiGe heterojunction solar cells improve short current density much significantly than conventional amorphous silicon solar cells do. Moreover, the power conversion efficiency of the new designed a-Si/a-SiGe solar cell is 16.29 %, which is achieved for the thin film solar cell up to now. Furthermore, for the purpose of enhancing the power conversion efficiency, we combine the 「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」 structure and the pillared array structure to optimize the design by using TCAD software. The results indicate that under the same solar cell structure, the pillared array structure has a higher power conversion efficiency which is 4.76 % more than that of the planar structure stated above.
目次 Table of Contents
論文審定書.....................................................................................................................i
英文論文審定書............................................................................................................ii
致謝...............................................................................................................................iii
摘要...............................................................................................................................iv
Abstract..........................................................................................................................v
目錄 vi
圖次 ix
第一章、導論 1
1.1 背景 1
1.2 文獻回顧 3
1.3 動機 9
第二章、元件設計與模擬 11
2.1 矽鍺異質接面薄膜太陽能電池模擬 11
2.1.1 模擬之物理模型 11
2.3氫化非晶矽/矽鍺太陽能電池 (a-Si:H/a-SiGe) 15
2.3.1「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / n-a-Si:H」太陽能電池 (Cell A) 15
2.3.2「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / n-a-Si:H」太陽能電池 (Cell B) 23
2.3.3「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」太陽能電池 (Cell C) 29
2.3.4「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / i3-a-Si:H / n-a-Si:H」太陽能電池 (Cell D) 33
2.4最佳化薄膜太陽能電池比較 37
2.5柱狀陣列結構太陽能電池 42
第三章、製程結果與討論 46
3.1異質接面太陽能電池製程 46
3.2平面薄膜太陽能電池製程與光罩設計 46
3.3 平面薄膜太陽能電池製程結果與討論 49
3.3.1 傳統非晶矽薄膜太陽能電池量測 50
3.3.2「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / n-a-Si:H」太陽能電池量測 52
3.3.3「p-a-Si:H / i1-a-Si:H / i2-a-SiGe / n-a-Si:H」太陽能電池量測 54
3.3.4「p-a-Si:H / i1-a-SiGe / i2-a-Si:H / i3-a-SiGe / n-a-Si:H」太陽能電池量測 56
3.4柱狀陣列太陽能電池製程與光罩設計 60
第四章、結論與未來展望 63
4.1結論 63
4.2未來展望 64
參考文獻 65
附錄A 72
光電效應 72
光伏特效應 73
太陽光譜 74
太陽能電池原理 74
太陽能電池的電性參數 75
光學特性探討 79
外部量子效率 79
內部量子效率 79
復合機制 79
蕭克力萊德霍爾復合(SRH recombination) 80
輻射復合(Radiative Recombination) 81
歐傑復合(Auger recombination) 82
氫化非晶矽太陽能電池原理 83
附錄B. 個人獲獎 84
參考文獻 References
[1] H. R. Hsu, S. C. Hsu and Y. S. Liu, “Improvement of VOC and JSC in CuInGaSe2 Solar Cells using a novel sandwiched CuGa/CuInGa/In precursor structure,” Appl. Phys. Lett., vol. 100, no. 23, pp. 233903-1–233903-3, Jun. 2013.
[2] S. Ishizuka, A. Yamada, P. Fons and S. Niki, “Characterization of CIGS Thin Films and Solar Cells Grown with a Plasma-Cracked Se Source,” in Proc. 37th IEEE Photovoltaic Spec. Conf., Jun. 2011, pp. 38–40.
[3] C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald and S. A. Ringel, “Investigations of High-Performance GaAs Solar Cells Grown on Ge-Si1-xGex-Si Substrates,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1055–1060, Jun. 2005.
[4] S. G. Sandoval, M. Khizar, J. Anderson, R. P. Manginell, G. M. Peake, N. Amin, K. Sopian, T. Rotter, G. Balakrishnan, S. R. J. Brueck and S. H. Zaidi, “Characterization of Thin GaAs Films Grown on nanostructured Silicon Substrates,” in Proc. 35th IEEE Photovoltaic Spec. Conf., Jun. 2010, pp. 2135–2138.
[5] X. Chen, S. Wang, Z. Luo, S. Zhang, Z. Lv, H. Jiang and S. Liu, “An Investigation on Structure and Materials of Laminated Organic Solar Cell Packaging,” in Proc. 62nd IEEE Electronic Components and Technology. Conf., May. 2012, pp. 2129–2134.
[6] W. Xu, S. Choi and M. G. Allen, “Hairlike Carbon-Fiber-Based Solar Cell,” in Proc. 23rd IEEE Micro Electro Mechanical Systems. Conf., Jan. 2010, pp. 1187–1190.
[7] S. AbdulAlmohsin and J. B. Cui, “Graphene-Enriched P3HT and Prophyrin- Modified ZnO Nanowire Arrays for Hybrid Solar Cell Applications,” J. Phys. Chem. C., pp. 9433–9438, Apr. 2012.
[8] H. M. Wei, H. B. Gong, L. Chen, M. Zi and B. Q. Cao, “Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure,” J. Phys. Chem. C., pp.10510–10515, Apr. 2012.
[9] M. Zeman, J. Breza and D. Donoval, “New Trends in Thin-Film Silicon Solar Cell Technology,” in Proc. IEEE Int. Advanced Semiconductor Devices. Microsystems, Oct. 2002, pp. 353–362.
[10] J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Solar Energy Mater. Solar Cells, vol. 98, pp. 277–282, Mar. 2012.
[11] A. G. Aberle, “Thin-film solar cell,” Thin Solid Films, vol. 517, no. 17, pp. 4706–4710, Jul. 2009
[12] J. A. Rodriquez, P. Otero, M. Vetter, J. Andreu, E. Comesana and A. J. Garcia, “Simulation of the effect of p-layer properties on the electrical behavior of a-Si:H thin film solar cells,” in Proc. Electron Device., Conf. Feb. 2011, pp. 1–4.
[13] Y. S. Lin, S. Y. Line, C. C. Wang, C. Y. Liu, A. Nautiyal, D. S. Wuu, P. C. Tsai, C. F. Chen and S. J. Lee, “Power effect of ZnO:Al film as back reflector on the performance of thin-film solar cells,” J. Vac. Sci. Technol. A., vol. 30, no. 1, pp. 11302-1–11302-5, Jan. 2012.
[14] C. H. Yang, C. Y. Hsueh, D. J. Yeh, C. I. Ho, C. M. Leu, Y. H. Yeh and S. C. Lee, “Hydrogenated Amorphous Silicon Solar Cells on Textured Flexible Substrate Copied from a Textured Glass Substrate Template,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1254–1256, Sep. 2011.
[15] Y. C. Tsao, C. Fisker and T. G. Pedersen, “Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications,” Optics Communications., vol. 315, no. 15, pp. 17–25, Mar. 2014.
[16] C. W. Chung and T. C. Wang, “Manufacture Process and Future Technology Development of Various Solar Cells,” J. Far East University, vol. 30, no. 2, Aug. 2013.
[17] S. Y. Lo, D. S. Wuu, C. H. Chang, C. C. Wang, S. Y. Lien and R. H. Horng, “Fabrication of Flexible Amorphous-Si Thin-Film Solar Cells on a Parylene Template Using a Direct Separation Process,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1433–1439, May. 2011.
[18] S. O. Kasap, Materials and Devices Website for Scientists and Engineers, Third Edition, McGraw-Hill, 1996.
[19] A. Kolodziej, “Staebler-Wronski Effect in Amorphous Silicon and its Alloys,” Opto-Electronics. Rev., vol. 12, no. 1, pp. 21–32, 2004.
[20] M. H. Du and S. B. Zhang, “Topological Defects and the Staebler-Wronski Effect in Hydrogenated Amorphous Silicon,” J. Appl. Phys., vol. 87, no. 19, pp. 191903-1–191903-3, Oct. 2005.
[21] P. Stradins, “Staebler-Wronski Defects: Creation Efficiency, Stability, and Effect on a-Si:H Solar Cell Degradation,” in Proc. 35th IEEE Photovoltaic Spec. Conf., 2010, pp. 142–145.
[22] J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Solar Energy Mater. Solar Cells, vol. 98, pp. 277–282, Mar. 2012.
[23] G. Hou, Q. Fan, X. Liao, C. Chen, X. Xiang and X. Deng, “High-efficiency and highly stable a-Si:H solar cell deposited at high rate (8Å/s) with disilane grading process,” J. Vac. Sci. Technol. A, vol. 29, no. 6, pp. 61201-1–61201-4, Dec. 2011.
[24] S. Zhong, X. Hua and W. Shen, “Simulation of High-Efficiency Crystalline Silicon Solar Cells With Homo-Hetero Junctions,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2104–2110, Jul. 2013.
[25] K. Islam and A. Nayfeh, “Simulation of a-Si/c-GaAs/c-Si Heterojunction Solar Cells,” in Proc. 6th Eur. Computer Modeling. Simulation Conf., Nov. 2012, pp. 466–470.
[26] S. Kim, H. Lee, J. W. Chung, S. W. Ahn and H. M. Lee, “n-Type microcrystalline silicon oxide layer and its application to high-performance back reflectors in thin-film silicon solar cells,” Current Applied Physics., vol. 13, no. 4, pp. 743–747, Jun. 2013.
[27] A. Kovsarian and P. Jelodarian, “Optimization and characterization of advanced solar cells based on thin-film a-Si:H/SiGe hetero-stricture,” in Proc. 19th IEEE Electrical Engineering. Conf., May. 2011, pp. 1–5.
[28] D. Shahrjerdi, B. Hekmatshoar and D. K. Sadana, “Low-Temperature a-Si:H/GaAs Heterojunction Solar Cells,” J. Photovoltaics., vol. 1, no. 1, pp. 104–107, Jul. 2011.
[29] M. H. Liao, C. H. Chen, L. C. Chang and C. Yang, “A novel stress design for the type-II hetero-junction solar cell with superior performance,” J. Appl. Phys., vol. 111, no. 6, pp. 63109-1–63109-4, Mar. 2012.
[30] S. T. Chang, M. H. Liao and W. K. Lin, “Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis,” Thin Solid Films., vol. 519, no. 15, pp. 5022–5025, May. 2011.
[31] Z. Liu, M. Yamanaka, H. Takato, H. Kawanami and I. Sakata, “MBE Growth of Crystalline SiGe Thin Films for Solar Cell Applications with Precisely Controlled Heterojunction,” in Proc. 37th IEEE Photovoltaic Spec. Conf., Jun. 2011, pp. 256–261.
[32] P. Jelodarian and A. Kosarian, “Modeling of the Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of a-Si:H/a-SiGe:H Thin Film Hetero-Structure Solar Cell,” in Proc. IEEE Int. Computational Intelligence. Modelling and Simulation. Conf., Sep. 2011, pp. 408–412.
[33] D. Caputo, G. d. Cesare and M. Tucci, “Built-in Enhancement in a-Si:H Solar Cell by Chromium Silicide Layer,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 689–691, Jul. 2010.
[34] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” J. Photovoltaics., vol. 4, no. 1, pp. 96–99, Jan. 2014.
[35] Q. H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, X. Deng, “High efficiency silicon–germanium thin film solar cells using graded absorber layer,” Solar Energy Mater. Solar Cells, vol. 94, no. 7, pp. 1300–1302, Jul. 2010.
[36] A. Garcia-Rivera, E. Comesaña, A. J. Garcia-Loureiro and R. Valin, “Simulation of a-Si:H Dual Junction Solar Cells,” in Proc. Electron Devices. Conf., Feb. 2013, pp. 373–376.
[37] J. Yang, J. Goguen and R. Kleiman, “Silicon Solar Cell With Integrated Tunnel Junction For Multijunction Photovoltaic Applications,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1732–1734, Dec. 2012.
[38] S. M. Wong, H. Y. Yu, Y. Li, J. Li, X. W. Sun, N. Singh, P. G. Q. Lo and D. L. Kwong, “Boosting Short-Circuit Current With Rationally Designed Periodic Si Nanopillar Surface Texturing for Solar Cells,” IEEE Tran. Electron Devices., vol. 58, no. 9, pp. 3224–3229, Sep. 2011.
[39] S. M. Wong, H. Y. Yu, J. S. Li, Y. L. Li, N. Singh, Patrick G. Q. Lo and D. L. Kwong, “Si Nanopillar Array Surface-Textured Thin-Film Solar Cell with Radial p-n Junction,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 176–178, Feb. 2011.
[40] S. J. Baik, K. S. Lim and J. C. Lee, “Towards Light-Trapping Free Amorphous Si Only Multi-Junction Solar Cells,” in Proc. 38th IEEE Photovoltaic Spec. Conf., Jun. 2012, pp. 1182–1186.
[41] S. T. Chang, M. Tang, C. X. Huang and C. W. Chang, “Tandem Thin Film Solar Cell with a Nanoplate Structure,” in Proc. 10th IEEE Nanotechnology. Conf., Aug. 2010, pp. 316–319.
[42] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett., vol. 9, no. 1, pp. 279–282, Dec. 2009.
[43] M. Kulakci, F. Es, B. Ozdemir, H. E. Unalan and R. Turan, “Application of Si Nanowires Fabricated by Metal-Assisted Etching to Crystalline Si Solar Cells,” J. Photovoltaics., vol. 3, no. 1, pp. 548–553, Jan. 2013.
[44] H. H. Li, P. Y. Yang, S. M. Chiou, H. W. Liu and H. C. Cheng, “A Novel Coaxial-Structured Amorphous-Silicon p-i-n Solar Cell with Al-Doped ZnO Nanowires,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 928–930, Jul. 2011.
[45] S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, P. G. Q. Lo and D. L. Kwong, “Design High-Efficiency Si Nanopillar-Array-Textured Thin-Film Solar Cell,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 335–337, Apr. 2010.
[46] Z. Pei, S. T. Chang, C. W. Liu and Y. C. Chen, “Numerical Simulation on the Photovoltaic Behavior of an Amorphous-Silicon Nanowire-Array Solar Cell,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1305–1307, Dec. 2009.
[47] C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif and Y. Cui1, “High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector,” Advanced Energy Materials., vol. 2, no. 6, pp. 628–633, Jun. 2012.
[48] X. Liao, W. Du, X. Yang, H. Povolny, X. Xiang and X. Deng, “High Efficiency Amorphous Silicon Germanium Solar Cells,” in Proc. 31th IEEE Photovoltaic Spec. conf., Jan. 2005, pp. 1444–1447.
[49] Q. H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du and X. Deng, “High Efficiency Silicon-Germanium Thin Film Solar Cells Using Graded Absorber Layer,” Solar Energy Mater. Solar Cells, vol. 94, no. 7, pp. 1300–1302, Jul. 2010.
[50] H. M. Li, D. Y. Lee, W. J. Yoo, “Optoelectronic Performance of Radial-Junction Si Nanopillar and Nanohole Solar Cells,” IEEE Tran. Electron Devices., vol. 59, no. 9, pp. 2368–2374, Sep. 2012.
[51] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature., vol. 458, pp. 872–876, Apr. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code