Responsive image
博碩士論文 etd-0706114-154324 詳細資訊
Title page for etd-0706114-154324
論文名稱
Title
一個具有抬高本體與雙嵌入氧化物之高集積密度非傳統互補金氧半
A High Density Non-Classical CMOS with Elevated Body and Two Embedded Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-11
關鍵字
Keywords
傳遞延遲時間、單載子互補金氧半、評量指標、貫穿電流、共享輸出、抬高本體與雙嵌入氧化物負型金氧半負載
punch through current, Unipolar CMOS, EBTEO NMOS load, figure of merit, share-terminal output, propagation delay time
統計
Statistics
本論文已被瀏覽 5691 次,被下載 38
The thesis/dissertation has been browsed 5691 times, has been downloaded 38 times.
中文摘要
本論文中,我們提出一個具有抬高本體與雙嵌入氧化物之單載子互補金氧半反相器(Unipolar CMOS)。單載子互補式金氧半其操作為藉由兩顆同為負型金氧半場效電晶體(NMOS)來取代傳統正型(PMOS)與負型(NMOS)金氧半所組成的反相器,且傳輸載子均為電子。同時,負載端藉由抬高本體與雙嵌入氧化物之NMOS來阻絕反轉層電流,使得以貫穿電流為主要操作電流,且達到與傳統PMOS之相同特性。
根據模擬結果顯示,本論文所提出之非傳統單載子架構在邏輯電路上均有正確的邏輯特性,且在隨機補償下,可加以驗證其趨勢。在製程部分,因驅動端(Q1)與負載端(Q2)同樣由NMOS所組成,故可除去N型井之製程步驟與共享輸出電極,且不須因載子移動率不同而做寬度之補償,因此在規劃佈局圖時,整體面積相較於傳統互補金氧半反相器減少73 %,使組合成邏輯電路時也能有效降低面積與成本。在貫穿效應機制的運用下,傳遞延遲時間也比傳統互補金氧半反相器下降了42 %。另外,我們將元件功函數改變,使元件在弱反轉區操作,可以有效減緩反轉層電流的產生與降低漏電流之效果,故在評量指標的表現上,相較於傳統互補金氧半有了46 %之改善。
Abstract
In this thesis, we propose a unipolar CMOS with elevated body and Two-embedded oxide (EBTEO).The operation of the unipolar CMOS that the NMOS driver and the EBTEO NMOS load are presented to replace the conventional PMOS and NMOS. And the channel carriers are composed of electrons only. Meantime, the EBTEO structure can separate the inversion current, so the guiding current is the punch through current and it can achieve the PMOS characteristics in the EBTEO NMOS load. According to the simulation results, our proposed devices can achieve correct logical characteristics and further prove the trend in random compensation. Due to all NMOS devices are used in our structure, the N-well process can be removed, the output contact can be shared, and the load design does not have to compensate the layout width. So the layout areas can be reduced 73 %. The fabrication areas and cost can be reduced in logic circuits. The delay time of our proposed CMOS can reduce 42 % when compared with the conventional CMOS. In addition, the sub-threshold region unipolar CMOS can be formed by changing the gate work function. So, it can improve 46 % in the figure of merit (FOM) when compared with the conventional CMOS.
目次 Table of Contents
論文審定書……………………………………………………………………………....i
英文論文審定書………………………………………………………………………...ii
致謝……………………………………………………………………………………..iii
摘要...…………………………………………………………………………………...iv
Abstract ……………………………………………………………………………….....v
第一章 緒論 1
1.1 背景 1
1.2 動機 3
第二章 傳統與單載子互補金氧半之操作原理 5
2.1 貫穿效應 5
2.2 傳統互補金氧半反相器 7
2.2.1 架構與操作原理 7
2.2.2 負載線 8
2.2.3 電壓與電流轉移特性曲線 9
2.3 抬高本體與雙嵌入氧化物之非傳統單載子傳輸互補金氧半反相器 11
2.3.1 實際元件製程步驟 11
2.3.2 模擬元件架構尺寸說明 13
2.3.3 操作原理 14
2.3.4 負載線 16
2.3.5 電壓與電流轉移特性曲線 18
2.3.6 電流向量 19
第三章 電性討論與分析 21
3.1 模擬使用之物理模型 21
3.2 元件模擬電性結果之分析與討論 22
3.2.1 具有抬高本體與雙嵌入氧化物負型金氧半負載之非傳統單極性互補金氧半反相器 22
3.2.2 具有抬高本體與雙嵌入氧化物負型金氧半之不同參數特性 24
第四章 電路與次臨界分析 37
4.1 數位邏輯電路模擬之應用 37
4.1.1 反或閘(NOR Gate) 37
4.1.2 反及閘(NAND Gate) 40
4.1.3 Pseudo-NMOS之反或閘(Pseudo-NMOS-NOR Gate) 43
4.1.4 Pseudo-NMOS之反及閘(Pseudo-NMOS-NAND Gate) 46
4.1.5 環形震盪器(Ring Oscillator) 49
4.1.6 互斥或閘(XOR Gate) 50
4.1.7 全加器(Full adder) 53
4.1.8 解碼器(Decoder) 56
4.1.9 乘法器(Multiplier) 59
4.1.10 多工器(Multiplexers) 63
4.1.11 骨牌CMOS邏輯(Domino CMOS logic) 66
4.1.12 RS正反器(RS Flip-flop) 69
4.1.13 D型正反器(D Flip-flop) 72
4.1.14 JK正反器(JK Flip-flop) 75
4.1.15 T型正反器(T Flip-flop) 78
4.1.16 靜態隨機存取記憶體(SRAM) 81
4.2 傳遞延遲時間(Propagation delay time)與評量指標(FOM)之比較 84
4.3 抬高本體與雙嵌入氧化物單載子互補金氧半與傳統互補金氧半之佈局面積比較 88
4.4 次臨界型之操作與討論 89
4.4.1 次臨界型操作之原理分析 90
4.4.2 次臨界型操作之單載子互補金氧半 97
4.4.3 次臨界型操作之數位邏輯電路模擬 99
4.4.4 次臨界型操作之傳遞延遲時間(Propagation delay time)與評量指標(FOM)比較 106
4.4.5 次臨界型操作之VDD變化 113
4.5 實作量測結果 115
第五章 結論與未來展望 118
5.1 結論 118
5.2 未來展望 119
參考文獻 120
附錄 126
A. 源極與汲極空乏區寬度計算 126
B. 閘極控制之空乏區寬度 127
C. 功函數差 129
D. 平帶電壓 129
E. 臨限電壓 130
個人著作 131
參考文獻 References
[1] A. S. Sedra, and K. C. Smith, Microelectronic Circuits, Fifth Edition, New York: Oxford University Press, pp. 949-952, 2004.
[2] G. E. Moore, “Cramming more components onto integrated circuits,” in Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998.
[3] S.-H. Oh, D. Monroe, and J. Hergenrother, “Analytic Description of Short-Channel Effects in Fully-Depleted Double-Gate and Cylindrical, Surrounding-Gate MOSFETs,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 445-447, Sep. 2000.
[4] S. Odanaka, A. Hiroki, K. Yamashita, K. Nakanishi, and T. Noda, “Double Pocket Architecture Using Indium and Boron for Sub-100 nm MOSFETs,” IEEE Electron Device Lett., vol. 22, no. 7, pp. 330-332, Jul. 2001.
[5] F. M. Waelass, and C. T. Sah, “Nanowatt Logic Using Field-Effect Metal-Oxide Semiconductor Triodes,” in Proc. IEEE Int. SSC Conf., Feb. 1963, pp. 32-33.
[6] S. M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, New York: John Wiley & Sons, pp. 537, 2001.
[7] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-Channel Germanium MOSFET’s with High Channel Mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, Jul. 1989.
[8] H. Shang, J. Chu, S. Bedell, E. Gusev, P. Jamison, Y. Zhang, J. Ott, M. Copel, D. Sadana, K. Guarini, and M. Ieong, “Selectively formed high mobility strained Ge pMOSFETs for high-performance CMOS,” in IEDM Tech. Dig., Dec. 2004, pp. 157-160.
[9] L. Washington, F. Nouri, S. Thirupapuliyur, G. Eneman, P. Verheyen, V. Moroz, L. Smith, X. Xu, M. Kawaguchi, T. Huang, K. Ahmed, M. Balseanu, L. Xia, M. Shen, Y. Kim, R. Rooyackers, K. D. Meyer, and R. Schreutelkamp, “pMOSFET With 200 % Mobility Enhancement Induced by Multiple Stressors,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 511-513, Jun. 2006.
[10] L. Hutin, C. L. Royer, F. Andrieu, O. Weber, M. Casse, J.-M. Hartmann, D. Cooper, A. Beche, L. Brevard, L. Brunet, J. Cluzel, P. Batude, M. Vinet, and O. Faynot, “Dual Strained Channel Co-Integration into CMOS, RO and SRAM cells on FDSOI down to 17nm Gate Length,” in IEDM Tech. Dig., Dec. 2010, pp. 253-256.
[11] Q. Zhou, S.-M. Koh, T. Thanigaivelan, T. Henry, and Y.-C. Yeo, “Contact Resistance Reduction for Strained N-MOSFETs With Silicon-Carbon Source/Drain Utilizing Aluminum Ion Implant and Aluminum Profile Engineering,” IEEE Trans. Electron Devices, vol. 60, no. 4, pp. 1310-1317, Apr. 2013.
[12] J. Mitard, L. Witters, B. Vincent, J. Franco, P. Favia, A. Hikavyy, G. Eneman, R. Loo, D. P. Brunco, N. Kabir, H. Bender, F. Sebaai, R. Vos, P. Mertens, A. Milenin, E. Vecchio, L. A. Ragnarsson, N. Collaert, and A. Thean, “First Demonstration of Strained Ge-in-STI IFQW pFETs Featuring Raised SiGe 75 % S/D, Replacement Metal Gate and Germanided Local Interconnects,” in VLSI Symp. Tech. Dig., Jun. 2013, pp. T20-T21.
[13] C. L. Royer, M. Casse, F. Andrieu, O. Weber, O. Weber, P. Perreau, J. F. Damlencourt, S. Baudot, C. Tabone, F. Allain, P. Scheiblin, C. Rauer, L. Hutin, C. Figuet, C. Aulnette, N. Daval, B. Y. Nguyen, and K. K. Bourdelle, “Dual Channel and Strain for CMOS Co-Integration in FDSOI Device Architecture,” in Proc. IEEE Eur. Solid State Device Res. Conf., Sep. 2010, pp. 206-209.
[14] C.-W. Chen, J.-Y. Tzeng, C.-T. Chung, H.-P. Chien, C.-H. Chien, G.-L. Luo, P.-Y. Wang, and B.-Y. Tsui, “Enhancing the Performance of Germanium Channel nMOSFET Using Phosphorus Dopant Segregation,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 6-8, Jan. 2014.
[15] C. H. Lee, C. Lu, T. Tabata, W. F. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, “Oxygen Potential Engineering of Interfacial Layer for Deep Sub-nm EOT High-k Gate Stacks on Ge,” in IEDM Tech. Dig., Dec. 2013, pp. 40-43.
[16] F. Bellenger, B. D. Jaeger, C. Merckling, M. Houssa, J. Penaud, L. Nyns, E. Vrancken, M. Caymax, M. Meuris, T. Hoffmann, K. D. Meyer, and M. Heyns, “High FET Performance for a Future CMOS GeO2-Based Technology,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 402-404, May 2010.
[17] B. Duriez, G. Vellianitis, M. J. H. V. Dal, G. Doornbos, R. Oxland, K. K. Bhuwalka, M. Holland, Y. S. Chang, C. H. Hsieh, K. M. Yin, Y. C. See, M. Passlack, and C. H. Diaz, “Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300mm Si wafers,” in IEDM Tech. Dig., Dec. 2013, pp. 522-525.
[18] C. H. Lee, C. Lu, T. Tabata, T. Nishimura, K. Nagashio, and A. ToriumiR, “Enhancement of High-Ns Electron Mobility in Sub-nm EOT Ge n-MOSFETs,” in VLSI Symp. Tech. Dig., Jun. 2013, pp. T28-T29.
[19] J. H. Park, M. Tada, D. Kuzum, P. Kapur, H. Y. Yu, H. S. P. Wong, and K. C. Saraswat, “Low Temperature (≤ 380 ºC) and High Performance Ge CMOS Technology with Novel Source/Drain by Metal-Induced Dopants Activation and High-K/Metal Gate Stack for Monolithic 3D Integration,” in IEDM Tech. Dig., Dec. 2008, pp. 1-4.
[20] G. Eneman, D. P. Brunco, L. Witters, B. Vincent, P. Favia, A. Hikavyy, A. D. Keersgieter, J. Mitard, R. Loo, A. Veloso, O. Richard, H. Bender, S. H. Lee, M. V. Dal, N. Kabir, W. Vandervorst, M. Caymax, N. Horiguchi, N. Collaert, and A. Thean, “Stress Simulations for Optimal Mobility Group IV p- and nMOS FinFETs for the 14 nm Node and Beyond,” in IEDM Tech. Dig., Dec. 2012, pp. 131-134.
[21] R. Coquand, M. Casse, S. Barraud, D. Cooper, V. M. Alvaro, M. P. Samson, S. Monfray, F. Boeuf, G. Ghibaudo, O. Faynot, and T. Poiroux, “Strain-Induced Performance Enhancement of Trigate and Omega-Gate Nanowire FETs Scaled Down to 10-nm Width,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 727-732, Feb. 2013.
[22] P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-Field Enhancement of a Gate-All-Around Nanowire Thin-Film Transistor Memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216-218, Mar. 2010.
[23] C.-J. Su, T.-I. Tsai, Y.-L. Liou, Z.-M. Lin, H.-C. Lin, and T.-S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 521-523, Apr. 2011.
[24] H.-B. Chen, C.-Y. Chang, N.-H. Lu, J.-J. Wu, M.-H. Han, Y.-C. Cheng, and Y.-C. Wu, “Characteristics of Gate-All-Around Junctionless Poly-Si TFTs With an Ultrathin Channel,” IEEE Electron Device Lett., vol. 34, no. 7, pp. 897-899, Jul. 2013.
[25] R. Zhang, J.-C. Lin, X. Yu, M. Takenaka1, and S. Takagi, “Examination of physical origins limiting effective mobility of Ge MOSFETs and the improvement by atomic deuterium annealing,” in VLSI Symp. Tech. Dig., Jun. 2013, pp. T26-T27.
[26] B. Ghosh, X. Wang, X.-F. Fan, L. F. Register, and S. K. Banerjee, “Monte Carlo Study of Germanium n- and pMOSFETs,” IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 547-553, Apr. 2005.
[27] L. Witters, J. Mitard, A. Veloso, A. Hikavyy, J. Franco, T. Kauerauf, M. Cho, T. Schram, F. Sebai, S. Yamaguchi, S. Takeoka, M. Fukuda, W. E. Wang, B. Duriez, G. Eneman, R. Loo, K. Kellens, H. Tielens, P. Favia, E. Rohr, G. Hellings, H. Bender, P. Roussel, Y. Crabbe, S. Brus, G. Mannaert, S. Kubicek, K. Devriendt, K. De Meyer, L. A. Ragnarsson, A. Steegen, and N. Horiguchi, “Dual-channel technology with cap-free single metal gate for high performance CMOS in gate-first and gate-last integration,” in IEDM Tech. Dig., Dec. 2011, pp. 654-657.
[28] S. Takagi, R. Zhang, S.-H Kim, N. Taoka, M. Yokoyama, J.-K. Suh, R. Suzuki, and M. Takenaka, “MOS interface and channel engineering for high-mobility Ge/III-V CMOS,” in IEDM Tech. Dig., Dec. 2012, pp. 505-508.
[29] X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E.-Y. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 Passivation, HfO2 Gate Dielectric, and Single TaN Metal Gate: A Common Gate Stack Technology for In0.7Ga0.3As and Ge1−xSnx CMOS,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1640-1648, May 2013.
[30] T.-P. Ma, “Proposes Unipolar CMOS,” Semiconductor International, Oct. 2008.
[31] J.-T. Lin, H.-H. Chen, K.-Y. Lu, C.-H. Sun, Y.-C. Eng, C.-H. Kuo, P.-H. Lin, T.-Y. Lai, and F.-L. Yang, “Design Theory and Fabrication Process of 90 nm Unipolar-CMOS,” in Proc. IEEE Silicon Nanoelectronics Workshop, Jun. 2010, pp. 1-2.
[32] C.-H. Sun, J.-T. Lin, H.-H. Chen, Y.-C. Eng, C.-H. Kuo, T.-F. Chang, C.-Y. Chen, P.-H. Lin, and H.-N. Chiu, “Numerical study of non-classical unipolar CMOS with different embedded oxide and gate length,” in Proc. IEEE Int. ISNE Conf., Nov. 2010, pp. 21-24.
[33] C.-H. Lin, J.-T. Lin, H.-H. Chen, Y.-C. Eng, and S.-W. Wang, “Unipolar CMOS Inverter Based on Punch-Through Effect With Two Embedded Oxide Structure,” in Proc. IEEE Int. Conf. Electron Devices Solid-State Circuits, Nov. 2011, pp. 1-2.
[34] K.-Y. Chen, J.-T. Lin, H.-L. Huang, S.-W. Hsu, S.-H. Syu, and Y.-R. Lu, “A Study of Non-Classical Unipolar CMOS with Double-Embedded Oxide and Elevated Body,” in Proc. 20th Symp. Nano Device Technol., Apr. 2013, pp. 32-33.
[35] J. Zhu, R. A. Martin, and J. Y. Chen, “Punchthrough Current for Submicrometer MOSFET’s in CMOS VLSI,” IEEE Trans. Electron Devices, vol. 35, no. 2, pp. 145-151, Feb. 1988.
[36] T. A. Fjeldly, and M. Shur, “Threshold Voltage Modeling and the Subthreshold Regime of Operation of Short-Channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 137-145, Jan. 1993.
[37] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, Third Edition, New York: McGraw-Hill, pp. 449-548, 2003.
[38] ATHENA User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[39] F. C. Hsu, R. S. Muller, C. Hu, and P.-K. Ko, “A Simple Punch-through Model for Short-Channel MOSFETs,” IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1354-1359, Oct. 1983.
[40] ATLAS User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[41] C.-C. Tsai, and J.-T. Lin, “A Novel Non-classical CMOS Inverter Composed of a NMOS and a Junction-less PMOS Transistor for Low Power Application,” in Proc. 20th Symp. Nano Device Technol., Apr. 2013, pp. 32.
[42] S. Hanson, M. Seok, D. Sylvester, and D. Blaauw, “Nanometer Device Scaling in Subthreshold Logic and SRAM,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 175-185, Jan. 2008.
[43] B. M. Wilamowski, and A. Chin, “Low-Voltage Steep Turn-On pMOSFET Using Ferroelectric High-κ Gate Dielectric,” IEEE Electron Device Lett., vol. 35, no. 2, pp. 274-276, Feb. 2014.
[44] C. H. Cheng, and R. C. Jaeger, “The Lateral Punch-Through Transistor,” IEEE Electron Device Lett., vol. EDL-3, no. 10, pp. 277-279, Oct. 1982.
[45] 陳冠宇,一個具有本體抬高式與雙嵌入氧化物之高速度且低成本非傳統互補金氧半,國立中山大學電機工程研究所碩士論文,民國一百零二年,頁55。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code