Responsive image
博碩士論文 etd-0706114-154434 詳細資訊
Title page for etd-0706114-154434
論文名稱
Title
銅合金線可靠度及Al-Cu-Pd相圖研究
The Reliability Study of Cu Alloy Wire in Wire-bonding Process and the Study of Al-Cu-Pd Phase Diagram
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-08
繳交日期
Date of Submission
2014-08-06
關鍵字
Keywords
打線製程、銅線鋁墊微接點、擴散偶、相圖、Al-Cu-Pd三元系統
the Al-Cu-Pd ternary system, mic-contact of Cu-wire and Al-pad, wire-bonding process, diffusion couple, phase diagram
統計
Statistics
本論文已被瀏覽 5747 次,被下載 166
The thesis/dissertation has been browsed 5747 times, has been downloaded 166 times.
中文摘要
打線接合(Wire bonding)是電子封裝的一種方法,其中成熟且廣泛被使用的材料為金線接合鋁墊,但由於金的價格昂貴,目前有許多替代材料的研究。銅線因價格低,導電性、導熱性皆優於金線,而成為替代材料的選擇之一。但銅線在製程中容易氧化,可在表面鍍上一層保護層,鈀(Pd)。
本研究比較純銅線及鍍鈀的銅合金線在微接點IMCs及crack生長,得知銅鈀線的IMCs和crack的生長較慢,銅線表面鍍鈀的確可略增加微接點的可靠度。此外,IMCs的成長速率隨時效時間而減緩,且厚度在鋁墊消耗完後不會再增加。
另外,目前的文獻缺乏Al-Cu-Pd三元系統的相關資訊,本研究的第二部分為繪製Al-Cu-Pd在500oC的三元系平衡相圖。不同於傳統的單成分點的塊材合金,而是利用擴散偶的方式製備試片。擴散偶在低溫時可達到區域性平衡,利於完成低溫相圖;且一個試片提供多處相平衡資訊,節省材料又省時間。此外,金屬線和鋁墊間的相互擴散平衡如同一微小的擴散偶,此實驗結果也可以提供相關的相平衡資訊。
本研究繪製的Al-Cu-Pd 在500oC的三元平衡相圖中,有4個三元相和10個三相區。
Abstract
Wire bonding is a widely used method in electronic package, which gold wire bonds to aluminum pad to form the I/O joints. Because of the price of gold is high, many alternative materials have been studied to replace gold wire. Copper wire has the low price, better electrical conductivity and thermal conductivity than gold wire, copper wire has been selected as a alternative material. But copper is prone to oxidation in the process, a palladium protective layer coated on the surface of copper wire.
This study investigates the growth of intermetallic phases (IMCs) and crack formation of copper wire and palladium-coated copper wire under high temperature aging from 500 hrs to 2000 hrs at 175 oC and 205 oC. We found that the IMCs and crack of palladium-coated copper wire grew slowly. Coating palladium on the surface of copper can indeed slightly increase the reliability of the I/O joints. In addition, the growth rate of IMCs slowed down with aging time, and the thickness wouldn’t increase after the consumption of the aluminum pad.
The lack of information about the Al-Cu-Pd ternary system in literature, the second part of this study is the Al-Cu-Pd ternary phase diagram determination at 500oC.We used diffusion couple method instead of traditional equilibrated bulk alloys to determine the phase relations. There are four ternary phases and ten three-phase equilibria were determined in the Al-Cu-Pd ternary equilibrium phase diagram at 500oC.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
壹、前言 1
貳、文獻回顧 4
2-1界面反應 4
2-2 IMCs的成長動力學 5
2-3 打線接合技術 6
2-4打線接合材料 6
2-5 Al-Cu二元介金屬化合物 7
2-6 Al-Cu IMCs在界面的成長機制 8
2-7 Crack和Voids在界面的成長機制 8
2-8 鍍鈀(Pd)的銅線對界面的影響 10
2-9 擴散偶在界面的擴散路徑 10
2-10 Al-Cu二元系平衡相圖 11
2-11 Al-Pd二元系平衡相圖 12
2-12 Cu-Pd二元系平衡相圖 13
2-13 Al-Cu-Pd三元系統的偽二元系截面(pseudobinary section) 13
參、實驗方法 14
3-1實驗目的 14
3-2第一部分的實驗步驟 15
3-2-1試片的命名與熱處理 15
3-2-2試片製作 15
3-2-3試片分析 16
3-3 第二部分的實驗步驟 17
3-3-1 合金配製 17
3-3-2擴散偶製作及均質化熱處理 18
3-3-3單點試片製作及均質化熱處理 19
3-3-4 金相前處理 19
3-3-5 金相分析 20

肆、實驗結果與討論 21
4-1第一部分實驗 : 時效熱處理對微接點的影響 21
4-1-1 定量分析 21
4-1-2時效溫度175 oC時4N純銅線微接點的反應 22
4-1-3時效溫度205 oC時4N純銅線微接點的反應 22
4-1-4時效溫度175 oC時Cu-Pd-Au wire微接點的反應 23
4-1-5時效溫度205 oC時Cu-Pd-Au wire微接點的反應 23
4-1-6時效熱處理試片的討論 24
4-2第二部分實驗 : Al-Cu-Pd在500oC三元平衡相圖 26
4-2-1 Al-Cu20Pd80擴散偶 26
4-2-2 Al-Cu30Pd70擴散偶 26
4-2-3 Al-Cu50Pd50擴散偶 27
4-2-4 Al-Cu60Pd40擴散偶 27
4-2-5 Al-Cu70Pd30擴散偶 28
4-2-6 Al-Cu80Pd20擴散偶 28
4-2-7 Al-Cu90Pd10擴散偶 29

4-2-8 單點試片分析結果 29
4-2-9 Al-Cu90Pd10擴散偶的擴散路徑 32
4-2-10 Al-Cu70Pd30擴散偶的擴散路徑 33
4-2-11 Al-Cu-Pd 500oC三元相圖討論 34
伍、結論 36
陸、參考文獻 38












表目錄
表2.1 Cu-wire/Al-pad 界面IMCs在不同溫度的生長速率 42
表2.2 金屬特性比較[7] 42
表2.3 Cu-wire/Al-pad IMCs生成的體積變化率[26] 43
表2.4 Cu-Al二元系統穩定IMCs的晶體資訊[16] 43
表2.5 Al-Cu低溫穩定介金屬化合物的晶體資訊[13,15,16] 44
表2.6 Al-Pd穩定介金屬化合物的晶體資訊[38,40] 44
表2.7 Cu-Pd二元系統各相的晶體資訊[42] 45
表2.8 Al-Cu-Pd三元系統的固溶相Pd2CuAl的晶體資訊[48] 45
表3.2.1 封裝實驗的試片列表 46
表3.3.1 相圖實驗的試片列表 47
表4.2.1 Al-Cu20Pd80 500oC擴散偶的相成分表 48
表4.2.2 Al-Cu30Pd70 500oC擴散偶的相成分表 48
表4.2.3 Al-Cu50Pd50 500oC擴散偶的相成分表 49
表4.2.4 Al-Cu60Pd40 500oC擴散偶的相成分表 49
表4.2.5 Al-Cu70Pd30 500oC擴散偶的相成分表 50

表4.2.6 Al-Cu80Pd20 500oC擴散偶的相成分表 50
表4.2.7 Al-Cu90Pd10 500oC擴散偶的相成分表 51

















圖目錄
圖2.1 A-B的二元系統的擴散與自由能、化學勢之關係圖 52
圖2.2 (a)A-B的二元平衡相圖。(b) A/B平衡濃度示意圖 52
圖2.3 Cu-wire/Al-pad IMCs的成長厚度對時效時間作圖[6] 53
圖2.4 Murray在1985年建立的Al-Cu二元平衡相圖[15] 53
圖2.5 Ponweiser在2011年修正後的Al-Cu二元平衡相圖[16] 54
圖2.6 Cu-wire/Al-pad界面IMCs隨時效時間的成長示意圖[20] 54
圖2.7 C.J.Hang繪製的Cu-wire/Al-pad 在250 oC時效, IMCs和crack的成長示意圖[24] 55
圖2.8 Cu-wire bond periphery 的IMCs成長示意圖[20] 55
圖2.9 A-B-C三元合金系統的等溫平衡相圖和擴散路徑[32] 56
圖2.10 X.J. Liu在1998年修正後的Al-Cu二元平衡相圖[33] 56
圖2.11 早期的Al-Pd二元平衡相圖[36] 57
圖2.12 熱力學計算的Al-Pd二元平衡相圖[38] 57
圖2.13 Al-Pd二元系統在40~60at.%Pd的示意相圖[39] 58
圖2.14 McAlister在2013年修正的Al-Pd二元部分平衡相圖[38] 58
圖2.15 Subramanian建立的Cu-Pd二元平衡相圖[42] 59
圖2.16 M. Li利用熱力學模型計算的Cu-Pd二元平衡相圖[43] 59
圖2.17 Al-Cu-Pd三元系統Pd2Al-Cu的截面平衡相圖[44] 60
圖2.18 Al-Cu-Pd三元系統PdAl-Cu的截面平衡相圖[45] 61
圖2.19 Al-Cu-Pd三元系統50at.%Pd的截面平衡相圖[46] 62
圖3.1 微接點研究的實驗流程圖 63
圖3.2 擴散偶研究相圖的實驗流程圖 63
圖3.3.1 相圖實驗的單點試片位置 64
圖4.1.1 試片A-T175H3000之定量分析 65
圖4.1.2 試片L-T205H1000之定量分析 66
圖4.1.3 試片L’-T205H1000之定量分析 67
圖4.1.4 Cu_4N wire試片於175 oC時效熱處理之cross section 69
圖4.1.5 Cu_4N wire試片於175 oC時效之IMCs成長示意圖 70
圖4.1.6 Cu_4N wire試片於205 oC時效熱處理之cross section 72
圖4.1.7 Cu_4N wire試片於205 oC時效之IMCs成長示意圖 72
圖4.1.8 Cu-Pd-Au wire試片於175 oC時效之cross section 74
圖4.1.9 Cu-Pd-Au wire試片於175 oC時效之IMCs成長示意圖 75
圖4.1.10 Cu-Pd-Au wire試片於205 oC時效之cross section 77
圖4.1.11 Cu-Pd-Au wire試片於205 oC時效之IMCs成長示意圖 77
圖4.1.12 封裝試片在不同時效熱條件之IMCs成長比較示意圖 78
圖4.1.13 產線Cu-Pd-Au wire試片(L’)於175 oC時效熱處理之 cross section 79
圖4.1.14 產線Cu-Pd-Au wire試片(L’)於205 oC時效熱處理之 cross section 80
圖4.2.1 Al-Cu20Pd80 500oC擴散偶 81
圖4.2.2 Al-Cu30Pd70 500oC擴散偶 82
圖4.2.3 Al-Cu50Pd50 500oC擴散偶 83
圖4.2.4 Al-Cu60Pd40 500oC擴散偶 84
圖4.2.5 Al-Cu70Pd30 500oC擴散偶 85、85
圖4.2.6 Al-Cu80Pd20 500oC擴散偶 87
圖4.2.7 Al-Cu90Pd10 500oC擴散偶 88、88
圖4.2.8 合金Al80Cu10Pd10的BEI 2000x影像及相成分 90
圖4.2.9 合金Al75Cu10Pd15的BEI 2000x影像及相成分 90
圖4.2.10 合金Al65Cu20Pd15的BEI 2000x影像及相成分 91
圖4.2.11 合金Al50Cu10Pd40的BEI 4000x影像及相成分 92
圖4.2.12 合金Al52.5Cu5Pd42.5的BEI 4000x影像及相成分 92
圖4.2.13 合金Al40Cu40Pd20的BEI 4000x影像及相成分 93
圖4.2.14 合金Al20Cu60Pd20的BEI 4000x影像及相成分 93
圖4.2.15 合金Al25Cu40Pd35的BEI 4000x影像及相成分 94
圖4.2.16 合金Al35Cu10Pd55的BEI 4000x影像及相成分 94
圖4.2.17 合金Al20Cu15Pd65的BEI 4000x影像及相成分 95
圖4.2.18 合金Al19.5Cu7.5Pd73的BEI 4000x影像及相成分 95
圖4.2.19擴散偶Al-Cu90Pd10的擴散路徑示意圖 96
圖4.2.20擴散偶Al-Cu70Pd30的擴散路徑示意圖 97
圖4.2.21 Al-Cu-Pd 在500oC的三元平衡相圖 98
參考文獻 References
[1] Rao R. Tummala , “Fundamentals of Microsystems Packaging” , McGraw-Hill , (2001) .
[2] George G. Harman , “Wire Bonding in Microelectronic” 3rd Edition , McGraw-Hill , (2010) .
[3] S. Kaimori , T. Nonaka and A. Mizoguchi , IEEE Trans. Adv. Packag. , vol. 29 , p. 227 , (2006) .
[4] J.S. Kirkaldy , “Diffusion in Multicomponent Metallic Systems” , Can. Journal of Physics , vol.36 , p. 917 , (1958) .
[5] Y. Funamizu and K. Watanabe , “ Interdiffusion in the Al-Cu System” , Trans. Jpn. Inst. Met. ,vol. 12 , (1971) .
[6] H. Xu , C. Q. Liu , V. V. Silberschmidt and Z. Chen , “Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization”, Journal of Electronic Materials , vol. 39, no. 1, (2010) .
[7] William D. Callister , “Materials Science and Engineering : An Introduction” 7th Ed. , John Wiley & Sons Inc. ,(2007) .
[8] F. W. Sears , M. W. Zemansky and H. D. Young ,“University Physics” 7th Ed. , Addison-Wesley Pub. Co. , (1987) .
[9] Y.H. Chen and R.D. Doherty , “On the growth kinetics of plate-shaped precipitates in aluminium-copper and aluminium-gold alloys” , Scripta Metallurgica , vol.11 , p. 725~729 , (1977) .
[10] H. J. Kim , J. Y. Lee , K. W. Paik , K.W. Kob , J. H. Won , S. H. Choi , J. Lee , J. T. Moon and Y. J. Park ,“Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability” , IEEE Trans. Comp. Packag. Technol. , vol. 26 , no.3 , (2003) .
[11] C. D. Breach and F. Wulff , “New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al” , Microelectronics Reliability , vol. 44 , p. 973~981 , (2004) .
[12] S. Murali , N. Srikanth and Charles J. Vath III , “Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal aging of thermosonic wire bonds”, Materials Letters , vol. 58 , p. 3096~3101 , (2004) .

[13] F.W. Wulff , C. D. Breach , D. Stephan , T. Saraswati and K.J. Dittmer , “Characterisation of Intermetallic Growth in Copper and Gold ball bonds on Aluminum Metallisation” , IEEE Trans. Comp. Packag. Technol. , (2004) .
[14] S. Murali , N. Srikanth and Charles J. Vath III , “An Analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging” , Materials Research Bulletin 38 , p. 637~646 , (2003) .
[15] J.L. Murray , “The aluminium-copper system” , Int. Met. Rev. , vol. 30 , p. 211~233 , (1985) .
[16] N. Ponweiser , C. L. Lengauer and K. W. Richter , “Re-investigation of phase equilibria in the system Al-Cu and structural analysis of the high-temperature phase-Al1Cu” , Intermetallics , vol. 19 , p. 1737~1746 , (2011) .
[17] Y. Tamou , J. Li , S.W. Russell and J. W. Mayer , “Thermal and ion beam induced thin film reactions in Cu–Al bilayers” , Nucl. Instrum. Method Phys. Res. , (1992) .
[18] K. Rajan and E.R. Wallach , “A transmission electron microscopy study of intermetallic formation in aluminum–copper thin film couples”, J. Crystal Growth , vol. 49 , (1980) .
[19] J. Chen , Y. S. Lai , Y. W. Wang and C. R. Kao , ”Investigation of growth behavior of Al–Cu intermetallic compounds in Cu wire bonding”, Microelectronics Reliability , vol. 51 , p. 125~129 , (2011) .
[20]許國銓,”銅線微接點可靠度研究”,國立中山大學材料與光電科學學系碩士論文,(2012)。
[21] S. Murali and N. Srikanth , “Grains, deformation substructures, and slips bands observed in thermosonic copper ball bonding” , Materials Characterization , vol. 50 , p. 39~50 , (2003) .
[22] I. Lum , J. P. Jung and Y. Zhou , “Bonding mechanism in ultrasonic gold ball bonds on copper substrate”, Metall. Mater. Trans. , (2005) .
[23] J. Chen , D. Degryse , P. ratchev and I. D. Wolf , “Mechanical issues of Cu-to-Cu wire bonding” , IEEE Trans. Comp. Pack. Technol. ,vol. 27 , (2004) .

[24] C. J. Hang , C. Q. Wang , M. Mayer , Y.H. Tian , Y. Zhou and H.H. Wang , “Growth behavior of Cu-Al intermetallic compounds and cracks in copper ball bonds during isothermal aging” , Microelectronics Reliability , vol. 48 , issue 3 , (2008) .
[25] E. L. Cussler , “Diffusion:Mass Transfer in Fluid Systems”2nd Ed. , Cambridge Series in Chemical Engineering , (1997) .
[26] H. Xu , C. Liu ,V.V. Silberschmidt , S.S. Pramana , T.J. White , Z. Chen , V.L. Acoff , “Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds”, Acta Materialia , vol. 59 , p. 5661~5673 , (2011) .
[27] L. J. Tang , H. M. Ho and Y. J. Zhang , “Investigation of Palladium Distribution on the Free Air Ball of Pd-coated Cu Wire”, Elec. Packag. Technol. Conf. , (2010) .
[28] K.D. Hill , “An investigation of palladium oxidation in the platinum/palladium thermocouple system” , Metrologia , vol 39 , (2002) .
[29] Y. W. Lin ,W. B. Ke , R. Y. Wang , I. S. Wang , Y. T. Chiu , K. C. Lu , K. L. Lin and Y. S. Lai , “The influence of Pd on the interfacial reactions between the Pd-plated Cu ball bond and Al pad” , Surface & Coatings Technol. , vol. 231, p. 599~603 , (2013) .
[30] J.S. Kirkaldy and L.C. Brown , Can. Metall. Quart. vol. 2 , p. 89 , (1963) .
[31] J.B. Clark , Trans. Met. Soc. AIME , vol. 227 , p. 1250 , (1963) .
[32] A.A. Kodentsov , G.F. Bastin , F.J.J. van Loo , “The diffusion couple technique in phase diagram determination” , Journal of Alloys and Compounds , vol. 320 , p. 207~217 , (2001) .
[33] X.J. Liu , I. Ohnuma , R. Kainuma and K. Ishida , “Phase equilibria in the Cu-rich portion of the Cu–Al binary system” , Journal of Alloys and Compounds , vol. 264 , p. 201~208 , (1998) .
[34] A.J. McAlister , “The Al-Pd(Aluminium-Palladium) System” , Bull. Alloy Phase Diagrams ,vol. 7 , p. 368~374 , (1986) .
[35] M. Yurechko , A. Fattah , T. Velikanova and B. Grushko , Journal of Alloys and Compounds , vol. 329 , p. 173~181 , (2001) .
[36] H. Okamoto , “Al-Pd (Aluminum-Palladium)” , Journal of Phase Equilibria , vol. 24 , no. 2 , (2003) .
[37] M. Li , C. Li , F. Wang and W. Zhang , “Thermodynamic Assessment of the Al-Pd System” , Intermetallics , vol. 14 , p.39~46 , (2006) .
[38] H. Okamoto , “Al-Pd (Aluminum-Palladium)” , Journal of Phase Equilibria and Diffusion , vol. 29, no. 2 ,p. 199 , (2008) .
[39] T. Matkovic´ , K. Schubert , J. Less-Common Met. , vol. 55 , (1977) .
[40] B. Grushko , “Again regarding the Al-Pd phase diagram” , Journal of Alloys and Compounds , vol. 557 , p.102~111 , (2013) .
[41] R. Ruer , Z. Anorg. Allg. Chem. , vol. 51 , p. 223 , (1906) .
[42] P.R. Subramanian and D.E. Laughlin , Journal of Phase Equilibria and Diffusion , vol. 12 , no. 2 , p. 231~243 , (1991) .
[43] M. Li , Z. Du , C. Guo , and C. Li , “A thermodynamic modeling of the Cu–Pd system” , CALPHAD , vol. 32 , p.439~446 , (2008) .
[44] L.A. Panteleimonov , A. Yu. Khanna and I.G. Sokolova , “The Cu- Pd2Al System” , Russ. J. Inorg. Chem. , vol. 9 , p.1478~1480 , (1964) .
[45] L.A. Panteleimonov , D. N. Gubieva , N. R. Serebryanaya , V. V. Zubenko , B. A. Pozharskii and Z. M. Zhakharev , “On the Compound PdAl and its Alloys with Cu” , Vestn. Mosk. Univ. Khim. , vol. 13 , p. 70~74 , (1972).
[46] L.A. Panteleimonov and D. N. Gubieva , “Investigation of Pd2AlCu-PdAl Alloys” , Russ. Metall. , vol. 2 , p. 173~174 , (1979) .
[47] L.A. Panteleimonov , D. N. Gubieva , N. R. Serebryanaya and V. V. Zubenko , “On the Compound Pd2AlCu and its Alloys with Ag” , Vestn. Mosk. Univ. Khim. , vol. 13 , p. 420~423 , (1972) .
[48] E. E. Schmid , “Aluminium-Copper-Palladium” , Ternary Alloys , vol. 4 , P. 639~643 , (1991) .
[49] J. Shackelford and W. Alexander , “CRC Materials Science and Engineering Handbook” , CRC Press , London , (1992) .
[50] A.J. McAlister , “The Al-Pd (Aluminium-Palladium) System” , Bull. Alloy Phase Diagrams , vol. 7 , P. 368~374 , (1986) .
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code