Responsive image
博碩士論文 etd-0706115-060453 詳細資訊
Title page for etd-0706115-060453
論文名稱
Title
一氧化氮調節乙烯或鹽分逆境誘導的甘薯葉片老化之角色探討
Study the role of nitric oxide in the modulation of ethephon or NaCl-induced leaf senescence in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
234
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-06
繳交日期
Date of Submission
2015-08-06
關鍵字
Keywords
一氧化氮、穀胱甘肽、甘藷、鹽分逆境、葉片老化、乙烯
Leaf senescence, Ethylene, Sweet potato, Glutathione, Nitric oxide, NaCl stress
統計
Statistics
本論文已被瀏覽 5792 次,被下載 51
The thesis/dissertation has been browsed 5792 times, has been downloaded 51 times.
中文摘要
摘要

葉片老化是葉發育過程最後街終階段且受內生發育信息及外在環境因子影響,包括植物生長調節物乙烯及非生物性鹽分(NaCl)逆境。在甘藷方面的研究,ethephon (是釋出乙烯的化合物) 及NaCl逆境會加速葉片老化,可由一氧化氮(NO)/H2O2/丙二醛(MDA) 合量增加、電解質滲漏(electrolyte leakage)程度上升、老化相關基因表現量增加、葉綠素降解、光合作用效率Fv/Fm降低、及葉片黃化等老化相關標幟變化證實。一氧化氮是氣體自由基分子,在植物生長發育及逆境反應過程扮演信息因子或活性氮族傷害來源的角色。甘藷在ethephon及NaCl逆境誘導的葉片老化過程其外加及內生一氧化氮所扮演的角色並不清楚。
在外加一氧化氮方面的研究,外加一氧化氮供給者SNP可保護對抗ethephon誘導的葉片老化,其機制與過氧化氫酶 (catalase) 及攜鈣素 (calmodulin) 的調控有關,過氧化氫酶 SPCAT1是甘藷葉中主要的同功酵素其活性受鈣及攜鈣素SPCAM調節。外加一氧化氮後1小時於ethephon處理葉片中顯著減少過氧化氫酶SPCAT1及攜鈣素SPCAM的蛋白量及酵素活性,其機制與 (1) peroxynitrite生成 (可能經由一氧化氮與超氧化物 (superoxide) 反應而來) 及(2) S-nitrosoglutathione reductase (GSNOR) 活性上升及GSSG含量增加等有關,導致蛋白質S-nitrosylation、ubiquitination及26S proteasome之降解。當處理1小時後過氧化氫酶活性下降而超氧化物歧化酶 (superoxide dismutase) 活性上升時,會導致處理葉片內H2O2合量顯著增加,並影響ethephon信息傳遞及可誘導基因的表現,這些因子的改變最後導致外加一氧化氮可保護對抗ethephon誘導的葉片老化。
在內生的一氧化氮方面的研究,ethephon處理2小時的葉片會產生內生的一氧化氮波峰,可作為ethephon下游的信息因子導致葉片老化,在添加一氧化氮清除者PTIO下此一氧化氮波峰形成、葉片老化程度、及老化相關標幟變化皆受抑制或延緩,並與穀胱甘肽含量變化、氧化還原平衡、過氧化氫酶及攜鈣素的蛋白量及酵素活性調節、及蛋白質的S-nitrosylation及ubiquitination程度有關。NaCl逆境也會在處理24小時內造成其內生一氧化氮含量增加及累積,並且可以作為NaCl逆境下游的信息因子,顯著促進甘藷葉片老化及老化相關標幟變化,在添加一氧化氮清除者PTIO下此一氧化氮含量、葉片老化程度、及老化相關標幟變化皆受抑制或延緩,過氧化氫酶SPCAT1及攜鈣素SPCAM蛋白量之S-nitrosylation and ubiquitination 與NaCl逆境促進甘藷葉片老化過程可能有關。
根據這些結果結論,一氧化氮可以作為ethephon或NaCl逆境上游或下游之信息因子調節甘藷葉片老化。外加一氧化氮可以利用不同機制抵消ethephon作用保護對抗葉片老化,而內生的一氧化氮可以作為ethephon及NaCl逆境下游信息因子促進葉片老化。
Abstract
ABSTRACT

Leaf senescence has been recognized as the final stage of leaf development and is affected by developmental cues and environmental stimuli, including plant growth regulators such as ethylene, and abiotic stress such as salt (NaCl) stress. In sweet potato, ethephon, an ethylene releasing compound, and NaCl stress could accelerate leaf senescence as demonstrated by elevation of nitric oxide (NO), H2O2, malondialdehyde (MDA), membrane electrolyte leakage, senescence-associated gene expression, reduction of chlorophyll content, decline of Fv/Fm level and leaf yellowing. NO is a gaseous free radical and plays pivotal roles as a signal molecule and source of reactive nitrogen species (RNS) damage in plant development and stress response. The roles of exogenous NO and endogenous NO in association with ethephon and NaCl-induced leaf senescence were not clear in sweet potato.
For exogenous NO, application of sodium nitroprusside (SNP; an NO donor) could provide protection against ethephon-induced leaf senescence. The mechanism of NO protection involves the regulation of catalase and calmodulin. Catalase SPCAT1 is the major isoform and H2O2 scavenger in sweet potato leaves, and its enzymatic activity is modulated by calcium and calmodulin SPCAM. Exogenous NO drastically reduced calmodulin SPCAM and catalase SPCAT1 protein levels and enzymatic activity starting from 1 h in ethephon-treated leaves via mechanisms associated with (1) generation of peroxynitrite (likely from exogenous NO reacting with superoxide) and (2) elevation of GSNOR activity and GSSG amount, which in turn lead to protein S-nitrosylation, ubiquitination and 26S proteasome degradation. The decreased catalase combined with enhanced superoxide dismutase (SOD) activities resulted in H2O2 increase at 1 h in treated leaves, which in turn repressed the ethephon signal for inducible gene expression. Those alterations in signal redox components finally result in protection against ethepon-induced leaf senescence.
For endogenous NO, it was produced at 2 h in treated leaves and could act as a downstream signal component of ethephon leading to leaf senescence, which was eliminated and mitigated by PTIO (an NO scavenger). Senescence-associated markers as mentioned above were also attenuated and associated with the alteration in glutathione redox balance, modulation of catalase SPCAT1 and calmodulin SPCAM protein levels and enzymatic activity via protein S-nitrosylation and ubiquitination. Senescence in sweet potato leaves was also induced by NaCl stress. Endogenous NO gradually increased and accumulated in NaCl-treated leaves within the first 24 h, and likely acted as a downstream signal component of NaCl stress leading to leaf senescence and changes of senescence-associated markers, which were attenuated in NaCl-treated leaves by PTIO. Modulation of catalase SPCAT1 and calmodulin SPCAM protein S-nitrosylation and ubiquitinations were also involved in NaCl-induced leaf senescence.
Based on these dada, NO can function as a upstream or downstream signal in the modulation of leaf senescence induced by ethephon or NaCl. Exogenous NO can function as an upstream signal to counteract ethephon action with multiple diverse mechanisms, which leads to the protection against leaf senescence. Endogenous NO can be generated and function as a downstream signal of ethephon and NaCl stress, which execute ethephon and NaCl action leading to promotion of leaf senescence.
目次 Table of Contents
Table of Content

Dissertation Examination Report………………………………………………….... i
Acknowledgements…………..…………………………………………………ii
Abstract in Chinese…………….………………………………………………iii
Abstract in English………………………………………………………………v
Table of Content………………………………………………………………xvi
Table of Figures……………….………………………………………………….xviii
List of Abbreviations…………………..…………………………………………xxiv
Chapter 1. General background………………….………………………………..1
1.1 Leaf Senescence……………….………………………………………1
1.2 Glutathione-ascorbate cycle as the heart of redox center…………….………1
1.3 Nitric oxide (NO) synthesis involves enzymatic and non-enzymatic process……………………………………………………………..………..….3
1.4 NO reacts with the superoxide of ROS, cysteine thiol group of GSH and protein landing to irreversible and reversible S-nitrosylation…………………4
1.5 GSNO is a natural NO reservoir and its homeostasis is regulated by GSNOR activity………………………………………………….………..…………….6
1.6 NO can act as a ubiquitous signal molecule in cope with plant developmental cues and environmental stress responses………………………………………7
1.7 NO, phytohormone and environmental stress interplay each other to weave a complex regulatory network……………………………………………………8
1.8 NO exhibits antagonistic effects on ethylene biosynthesis action…10
1.9 The possible mechanisms in association with the NO-mediated modulation of leaf senescence caused by ethylene or abiotic stresses…………...11
1.10 Leaf senescence in sweet potato………………………………………13
1.11 Specific aims…………………………….………………….……………15
Chapter 2. Exogenous nitric oxide protects against ethephon-induced leaf senescence in sweet potato………………………………………………………………16
Abstract…………………………………………………………………………..16
2.1 Introduction………………………………………………………………17
Ethylene and leaf senescence in sweet potato……………………………17
Signal components of ethephon-induced leaf senescence in sweet potato………………………………………………………………….…18
NO counteracts ethylene biosynthesis and action………………………….18
The possible mechanisms of NO-mediated protection………….………19
Specific aims……………………………………………………………..20
2.2 Materials and Methods…………………………………………………….21
Plant materials and chemicals……………………………………………21
Natural mature and senescent leaves………………………………………22
Ethephon and dark treatment……………………………………………….22
Effectors/ inhibitor treatments……………………………………………...22
Leaf morphology…………………………………………………………23
Measurement of chlorophyll content……………………………………….23
Measurement of Fv/Fm…………………………………………………..23
Determination of NO amount………………………………………………23
DAB staining……………………………………………………………….24
Determination of H2O2 amount…………………………………………..24
Measurement of MDA content……………………………………………..24
Determination of membrane electrolyte leakage level……………………25
Determination of glutathione content and GSH:GSSG ratio………….25
Total GSNOR activity assay………………………………………………26
In-gel catalase activity assay………………………………………………26
In-gel superoxide dismutase activity assay………………………………27
RT-PCR……………………………………………………………………..27
Immunodetection of S-nitrosylated protein with biotin switch assay……28
Immunodetection of ubiquitinated proteins with Ubiquitinated Protein Enrichment Kit……………………………………………………………28
Western blot hybridization…………………………………………….29
Statistical analysis…………………………………………………………29
2.3 Results…………………………………………………………………….30
Ethephon enhances leaf senescence in sweet potato………………………30
Exogenous NO mitigates ethephon-induced leaf senescence in sweet potato...............................................................................30
Exogenous NO modulates calmodulin, catalase and superoxide dismutase levels in ethephon-treated leaves…………………………………………31
Exogenous NO alters protein S-nitrosylation and ubiquitination levels of calmodulin SPCAM and catalase SPCAT1 in ethephon-treated leaves….32
Exogenous NO alters glutathione content and GSH:GSSG ratio in ethephon-treated leaves……………………………………………………32
Exogenous NO enhances total GSNOR activity in ethephon-treated leaves…………………………………………………………………33
Exogenous NO represses ethephon-inducible gene expression in treated leaves……………………………………………………………………..33
2.4 Discussion…………………..……………………………………………34
A protective role of exogenous NO against ethephon-induced leaf senescence in sweet potato………………………………………………34
Exogenous NO modulates calmodulin, catalase and superoxide dismutase levels in ethephon-treated leaves…………………………………………35
Exogenous NO alters glutathione content and GSH:GSSG ration in ethephon-treated leaf………………………………………………………37
Exogenous NO retained higher GSNOR activity in ethephon-treated leaf……………………………………………………………………….38
Exogenous NO represses ethephon-inducible gene induction….39
Conclusion…………………………………………………………………40
Chapter 3. Catalase activity is modulated by Ca2+ ion and calmodulin in sweet potato leaves…………………………………………………………………………………55
Abstract…………………………………………………………………………….55
3.1 Introduction……………………………………………………………….57
Plant catalase………………………………………………………………57
Catalases play important roles in the modulation of H2O2 homeostasis in cope with developmental cues and environmental stimuli………………58
Catalase activity is modulated with Ca2+ ion and calmodulin..…………….59
Catalases in sweet potato………………………………………………...…60
Specific aims…………………………………………………………..60
3.2 Materials and Methods…………………………………………………….61
Plant materials……………………………………………………………61
Protein structure analysis of plant catalases……………………………..61
Induction, expression, and purification of catalase SPCAT1 and calmodulin SPCAM fusion proteins from E. coli…………………………………...62
Temporal expression of catalase SPCAT1 and calmodulin SPCAM in leaves………………………………………………………………………63
EGTA and CaCl2 treatments………………………………………………64
Boiled and non-boiled treatments………………………………………….64
Treatment of catalase SPCAT1 fusion protein…………………………65
Catalase activity assay……………………………………………………….65
Assay methods…………………………………………………………….66
Statistical analysis………………………………..…………………………67
3.3 Results………………………………………………………………………….67
Sweet potato catalase SPCAT1 contains a putative conserved calmodulin binding domain and peroxisomal targeting signal around C-terminus…………………67
Sweet potato catalase activity is regulated by Ca2+ ions……………………67
Sweet potato catalase SPCAT1 activity is also modulated by calmodulin SPCAM…………………………………………………………………68
Exogenous catalase SPCAT1 fusion protein alleviates ethephon-induced leaf senescence……………………………………………………………………..69
3.4 Discussion…………………………………………………………………69
Sweet potato leaves contain a major catalase isoform………………………...69
Sweet potato major catalase SPCAT1 activity is modulated by its dimer (active) or monomer (inactive) status in cells………………………………………….70
Sweet potato catalase SPCAT1 activity play an important role in the modulation of H2O2 homeostasis and attenuation of ethephon-induced leaf senescence in sweet potato……………………………………………………………………..71
Sweet potato catalase activity is regulated by Ca2+ ions………………..72
Sweet potato catalase SPCAT1 activity is also modulated by calmodulin SPCAM…………………………………………………………………72
Modulation of catalase activity requires intimate association among catalase SPCAT1, calmodulin SPCAM and Ca2+ ion in sweet potato…………………..73
Conclusion…………………………………………………………………75
Chapter 4. catalase SPCAT1, calmodulin SPCAM, GSSG and peroxynitrite participate in exogenous NO protection against ethephon-induced leaf senescence in sweet potato……………………………………………………………………………….82
Abstract……………………………………………………………………………..82
4.1 Introduction………………………………………………………………..84
Ethephon alters morphological, biochemical, and physiological characteristics to promote leaf senescence in sweet potato……………………………………..84
NO modulates diverse molecular, biochemical, and physiological characteristics in plants……………………………………………………………………..86
Specific aims………………………………………………………………..88
4.2 Materials and Methods………………………………………………….89
Plant materials and chemicals…………………………………………………89
Ethephon, NO donor SNP and dark treatments…………………………….90
Effector/inhibitor treatment………………………………………………...90
GSSG treatment……………………………………………………………….92
Assay methods………………………………………………………………..92
Statistical analysis…………………………………………………………….93
4.3 Results………………………………………………………………………93
Exogenous NO rapidly produces an NO peak earlier than the NO peaks generated by ethephon in treated leaves……………………………………93
Exogenous NO represses ethephon-enhanced calmodulin SPCAM and catalase SPCAT1 protein and activity levels starting from 1 h after treatment ………94
26S proteasome and peroxynitrite are likely associated with exogenous NO-mediated repression of calmodulin SPCAM and catalase SPCAT1 protein and activity levels………………………………………………………….95
Peroxynitrite is likely associated with exogenous NO-mediated repression of ethephon-inducible gene expression on day 1 after treatment …….....96
Exogenous NO alters protein S-nitrosylation and ubiquitination levels of calmodulin SPCAM and catalase SPCAT1 at 1 h after treatment in ethephon-treated leaves…………………………………………………….96
Exogenous NO enhances superoxide dismutase activity and H2O2 levels at 1 h after treatment in ethephon-treated leaves ……………………..............97
Exogenous NO enhances GSSG amount and GSNOR activity at 1 h after treatment in ethephon-treated leaves………………………………………....98
Exogenous GSSG provides protection against ethephon-induced leaf senescence………............................................................................................98
4.4 Discussion…………………………………………………………………101
Exogenous NO rapidly produces an NO peak at 30 min, which may function as a signal to protect against ethephon-induced leaf senescence…………101
Exogenous NO-mediated reduction of catalase activity and calmodulin SPCAM/catalase SPCAT1 proteins possibly by modulation of gene expression, 26S proteasome degradation, peroxynitrite, protein ubiquitination and S-nitrosylation level……………………………………………………102
Peroxynitrite may also function as a downstream component of exogenous NO to modulate ethephon-inducible gene expression ………………………...105
Exogenous NO produces elevated H2O2 amount at 1 h after treatment possibly by modulation of catalase and superoxide dismutase activities, and is likely associated with protection against ethephon-mediated leaf senescence…….106
Exogenous GSSG provides protection against ethephon-induced leaf senescence possibly by reduction of calmodulin SPCAM and catalase SPCAT1 protein levels, elevation of intracellular GSSG content and reduction of GSH:GSSG ratio similar to exogenous NO effects…………………….108
A proposed model for exogenous NO protection against ethephon-induced leaf senescence in sweet potato ………………..………………………………….111
Conclusion……………………………………………………………………111
Chapter 5 Nitric oxide acts as a downstream signal component of ethephon to promote leaf senescence in sweet potato…………………………………………134
Abstract…………………………………………………………………………..134
5.1 Introduction……………………………………………………………..136
Nitric oxide as signal in plant response……………………………………136
GSNOR activity modulate NO availability, glutathione content and protein S-nitrosylation and ubiquitination levels……………………………………137
NO and Leaf senescence in sweet potato………………………………139
Specific Aim.…………………………………………………………..140
5.2 Materials and Methods………………………………………………..141
Plant materials and chemicals…………………………………………..141
Ethephon, PTIO and dark treatments …………………………………..142
Effector/inhibitor treatment ………………………………………142
5.3 Results…………………………………………………………………………143
An endogenous NO peak rapidly produced by ethephon at 2 h in treated leaves may come from NOS and NR activities in sweet potato……………………..143
Endogenous NO peak generation positively correlates with ethephon-induced leaf …………………………………………………………………………...144
PTIO attenuates ethephon-mediated reduction of GSH content, GSH:GSSG ratio, and GSNOR activity on day 3 in treated leaves…………………….144
PTIO represses ethephon-inducible gene induction on day 1 in treated leaves………………………………………………………………………145
PTIO alters glutathione content, GSH:GSSG ratio, and GSNOR activity level at 24 h in ethephon-treated leaves…………………………………..145
PTIO attenuates ethephon-mediated reduction of calmodulin SPCAM and catalase SPCAT1 protein levels on day 3 in treated leaves…………….146
PTIO alters S-nitrosylation and ubiquitination levels on catalase SPCAT1 and calmodulin SPCAM ……………………………………………………….146
5.4 Discussion……………………………………………………………….147
Endogenous NO functions as a downstream component of ethephon in induced leaf senescence ……………………………………………………………..147
PTIO attenuates ethephon-mediated reduction of antioxidant activities and delay of leaf senescence ………………………………………………..148
PTIO attenuates ethephon-mediated reduction of GSH content/GSH:GSSG ratio/GSNOR activity and promotion of leaf senescence…………………..150
NO scavenger PTIO mitigates ethephon-inducible gene induction in sweet potato leaves……………………………………………………………..151
NO scavenger PTIO attenuates ethephon-mediated reduction of calmodulin SPCAM and catalase SPCAT1 protein amount possibly by alternation of protein S-nitrosylation and ubiquitination levels ………………………152
A model is proposed for the endogenous NO generation by ethephon in the promotion of leaf senescence in sweet potato ………………………….154
Conclusion…………………………………………………………………154
Chapter 6 NO scavenger PTIO attenuates NaCl-induced leaf senescence in sweet potato……………………………………………………………………….168
Abstract…………………………………………………………………………168
6.1 Introduction……………………………………………………………………170
Leaf senescence………………………………………………………...170
NO and leaf senescence………………………………………………...170
The role of Catalase and calmodulin in stress-induced Leaf senescenc……172
NO and Leaf senescence in sweet potato………………………………172
Specific Aim……………………………………………………………173
6.2 Materials and Methods……………….………………………………………..174
Plant materials and chemicals……………………………………………..174
NaCl and dark treatment………….…………………………………………174
Effector/inhibitor treatment ……………………………………………174
6.3 Results……………………………………………………………………175
NaCl stress promotes leaf senescence in sweet potato ……………………….175
NO scavenger PTIO attenuates NaCl-induced leaf senescence in sweet potato………………………………………………………………………176
NaCl-mediated elevation of endogenous NO may come from nitric oxide synthase and nitrite reductase activities in sweet potato………………..177
PTIO attenuates the reduction of catalase activity, catalase SPCAT1/calmodulin SPCAM protein amounts and S-nitrosylation/ubiquitination levels in NaCl-treated leaves……………………………………………………..……177
6.4 Discussion……………………………………………………………….…….179
NaCl stress promotes leaf senescence in sweet potato……………………179
The endogenous NO generated by NaCl likely functions as a downstream signal component in the promotion of leaf senescence in sweet potato…….180
NaCl alters catalase activity and calmodulin SPCAM/catalase SPCAT1 protein levels during treatment in sweet potato……………………………………181
NaCl-enhanced catalase activity and calmodulin SPCAM/catalase SPCAT1 protein levels on day 3 are temporarily attenuated by NO scavenger PTIO in sweet potato…………………………………………………………………182
NaCl-mediated reduction of catalase activity and catalase SPCAT1/calmodulin SPCAM protein levels on day 9 are attenuated by NO scavenger PTIO in sweet potato…………………………………………………………………184
Conclusion...……………………………….…………………...……………185
References………………………………………………………..………………198
參考文獻 References
REFERENCES
Aboul-Soud MAM. Exogenous nitric oxide has negative impacts on ethylene emissions from intact and fresh-cut tomato fruit. Journal of Horticultural Science and Biotechnology 2010; 85(6): 516-520.
Aebi H. Catalase in vitro. Method Enzymol 1984; 105: 121–126.
Afiyanti M, Chen HJ. Sweet potato catalase activity is modulated by CaCl2 and calmodulin SPCAM in detached mature leaves. J Plant Physiol 2014; 171: 35-47.
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593-615.
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. 1999. Science; 284 (5423): 2148-52)
Azad N, Vallyathan V, Wang L, Tantishaiyakul V, Stehlik C, Leonard SS, and Rojanasakul Y. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol Chem. 2006; 281(45): 34124-34.
Bagju A. “Nitric oxide: role in plants under abiotic stress” in physiological mechanisms and adaptation strategies in plants under changing environment. Springer. 2014; 137-159.
Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, XY, Li DZ. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 2012; 53: 710-720.
Ball L, Accotto GP, Bechtold U. Evidence for a direct link between glutathione biosynthesis and stress defence gene expression in Arabidopsis. Plant Cell 2004; 16: 2448-2462.
Balog EM, Lockamy EL, Thomas DD, Ferrington DA. Site specific methionine oxidation initiates calmodulin degradation by 20S proteasome. Biochemistry. 2009; 48(13):3005-3016.
Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocaňa A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, del Río LA. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 2006; 57: 1785-1793.
Bauer, ML, Beckman JS, Bridges RJ, Fuller CM and Matalon S. Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles. Biochim. Biophys. Acta 1992; 1104: 87-94.
Beligni MV, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 1999; 208: 337344.
Beligni MW, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 2000; 210: 215-221.
Bergmeyer HU. Methods of Enzymatic Analysis (second edition) 1974.
Bethke PC, Gubler F, Jacobsen JV, Jones RL. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 2004; 219: 847-855.
Bouche N, Yellin A, Snedden WA and Fromm H. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 2005; 56: 435-466.
Brunelli L, Yermilov V, Beckman JS. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radical Biol Med 2001; 30: 709-714.
Cao C, Leng Y, Liu X, Li P and Kufe D. Catalase is regulated by ubiquitination and proteosomal degradation. Role of the c-Abl and Arg tyrosine kinases. Biochemistry 2003; 42 (35): 10348-53.
Chaki M. Function of reactive nitrogen species in sunflower (Helianthus annuus) in response to abiotic and biotic stresses. Ph.D. Thesis. University of Jaen, Spain 2007:241.
Chandlee JM, Scandalios JG. Gene expression during early kernel developmental in Zea mays. Dev Genetics 1983; 4: 99-115.
Chen HJ, Hou WC, Jane WN, Lin YH. Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). J Plant Physiol 2000; 157: 669-676.
Chen HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH. Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. J Exp Bot 2004; 55: 825-835.
Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH. Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas (L.) Lam.) leaves. J Plant Physiol 2003; 160: 547-555.
Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 2006; 163: 863-876.
Chen HJ, Wen IC, Huang GJ, Hou WC, Lin YH. Expression of sweet potato asparaginyl endopeptidase caused altered phenotypic characteristics in transgenic Arabidopsis. Bot Stud 2008; 49: 109-117.
Chen HJ, Huang GJ, Chen WS, Su CT, Hou WC, Lin YH. Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Bot Stud 2009; 50: 159-170.
Chen R, Sun S, Wang C, Li Y, Liang Y, An F, et al. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 2009; 19:1377-87.

Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, Lin YH. Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Bot Stud 2010a; 51: 171-181.
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 2010b; 167: 838-847.
Chen HJ, Afiyanti M, Huang GJ, Huang SS, Lin YH. Characterization of a leaf-type catalase in sweet potato (Ipomoea batatas Lam. (L.)). Bot Stud 2011; 52: 417-426.
Chen HJ, Wu SD, Huang GJ, Sheu CY, Afiyanti M, Li W, Lin YH. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 2012a; 169: 86-97.
Chen, H. J., S. D. Wu, Z. W. Lin, G. J. Huang, Y. H. Lin. Cloning and characterization of a sweet potato calmodulin SPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J Plant Physiol 2012b; 169: 529-541.
Chen HJ, Lin ZW, Huang GJ, Lin YH. Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J Plant Physiol 2012c; 169: 1892-1902.
Chen HJ, Tsai IJ, Shen CY, Tsai TN, Huang GJ, Lin YH. Ectopic expression of sweet potato granulin-containing cysteine protease SPCP3 alters phenotypic traits and drought stress sensitivity in transgenic Arabidopsis plants. J Plant Growth Regul 2013a; 32: 108-121.
Chen HJ, Huang CS, Huang GJ, Chow TJ, Lin YH. NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J Plant Physiol 2013b; 170: 1471-1483.
Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH and Meng TC. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 2008; 283:35265-35272.
Cheng C, Leng Y, Liu X, Yi Y, Li P and Kufe D. Catalase is regulated by ubiquitination and proteasomal degradation. Role of the c-Abl and Arg tyrosine kinases. Biochemistry. 2003; 42(35): 10348-53.
Cheng G, Yang E, Lu W, Jia Y, Jiang Y, Duan X. Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening. J Agric Food Chem 2009; 57: 5799-5804.
Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 2000; 13: 1380-1384.
Corpas FJ, Barroso JB, Carreras A, Quiro´ s M, Leo´n AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Go´mez M, del Rı´o LA. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 2004; 136: 2722–2733.
Corpas FJ, del Rio LA, Barroso JB. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 2007; 12:436-8.
Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 2004; 218: 900-905.
Creus CM. Nitric oxide is involved in the Azospirillum brasilense induced lateral root formation in tomato. Planta 2005; 221: 297-303.
Cueto M, Hernandez-Perea O,Martın R, Ventura ML, Rodrigo J, Lamas S, Golvano MP. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 1996; 398: 159-164.
David A, Yadav S and Bhatla SC. Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiol plant. 2010; 140(4): 342-54.
De Pinto MC, Locato V, Sgobba A, Romero-Puertas MdC, Gadaleta C, Delledone M and Gara D. S-nitrosylation of ascorbate peroxidase is part of program cell death signaling in tobacco bright yellow-2 cells. Plant Physiol. 2013; 163: 1766-1775.
Dean JV, Harper JE. The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 1988; 88: 389-395.
Du J, Li M, Kong D, Wang L, Lv Q, Wang J, Bao F, Gong Q, Xia J and He Y. Nitric oxide induces cotyledon senescence involving cooperation of the NES1/MAD1 and EIN2-associated ORE1 signaling pathway in Arabidopsis. J. Exp. Bot. 2013; 65(14): 4051-4063.
Du YY, Wang PC, Chen Jand Song CP. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 2008; 50: 1318-26.
Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N and Pasqualini S. Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol. 2006; 142: 595-608.
Eising R, Trelease RN and Ni W. Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons. Arch Biochem Biophys 1990; 278: 258-64.
Espunya MC, Diaz M, Moreno-Romero J, Martinez MC. Modification of intracellular levels of glutathionedependent formaldehyde dehydrogenase alters glutathione homeostasis and root development. Plant Cell Environ 2006; 29:1002-11.
Eum HL, Kim HB, Choi SB, Lee SK. Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 2009; 228: 331-338.
Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA. A central role for S-nitrosothiols in plant disease resistance. Proc Nat Acad Sci USA 2005; 102: 8054-8059.
Floryszak-Wieczorek J, Arasimowicz M, Milczarek G, Jelen H and Jackowiak H. Only an early nitric oxide peak and the following wave of secondary nitric oxide generation enhanced effective defense responses of pelargonium to a nectrophic pathogen. New Phytol. 2007; 175(4): 718-730.
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. Frontier Plant Sci 2013; 4: 398.
Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL and McClung CR. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996; 112(1): 327-36.
Gabaldon C, Gomez Ros LV, Pedreno MA, Ros Barcelo A. Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 2005; 165: 121-130.
Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulates K+ and Cl– channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 2003; 100: 11116-11121.
Ghanem ME, Albacete A, Martinez-Andujar C, Acosta M, Remedios RA, Dodd IC, Lutts S, and Perez-Alfocea F. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot. 2008; 59 (11): 3039-3050.
Gould KS, Klinguer A, Pugin A, Wendehenne D. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 2003; 26: 1851-1862.
Graziano M, Beligni MV, Lamattina L. Nitric oxide improves internal iron availability in plants. Plant Physiol 2002; 130: 1852-1859.
Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJA. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998; 273: 10857-10862.
Guan L and Scandalios JG. Developmentally related response of maize catalase genes to salycilic acid. Proc Natl Acad Sci USA 1995; 92: 5930-4.
Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 2003; 302: 100-103.
Gupta KJ, Kaiser WM. Production and scavenging of Nitric oxide by barley root mitochondria. Plant Cell Physiol 2010; 51: 576-584.
Havir EA and McHale NA. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 1987; 84: 450-5.
Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 1996; 98: 685-92.
Hodges DM, Delong JM, Forney CF, Prange RK. Improving the thiobarbaturic acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999; 207: 604-611.
Hou WC, Lu YL, Liu SY and Lin YH. Activities of superoxidase dismutase and glutathione peroxidase in leaves of different cultivars of Liriope spicata L. on 10% SDS-PAGE gels. Bot Bull AAcad Sin 2003; 44: 37-41.
Hu X, Neill SJ, Tang Z, Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 2005; 137: 663-670.
Hung KT, Chang CJ, Kao CH. Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 2002; 159: 159-166.
Jaffrey SR, Snyder SH. The biotin-switch method for the detection of S-nitrosylated proteins. Sci STKE 2001; 86: PL1.
Kim S, Wing SS and Ponka P. S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway. Molecular and Cell Biology. 2004; 24(1):330-337.
Kim YS, Kim HS, Lee YH, Kim MS, Oh HW, Hahn KW, Joung H, Jeon JH. Elevated H2O2 production via overexpression of a chloroplastic Cu/ZnSOD gene of lily (Lilium oriental hybrid ‘Marco Polo’) triggers ethylene synthesis in transgenic potato. Plant Cell Rep 2008; 27: 973-983.
Kone BC, Kuncewicz T, Zhang W, Yu ZY. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Renal Physiol 2003;285:178-190.
Kopyra M, Gwozdz EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 2003; 41: 1011-1017.
Kuzniak E, Patykowsky J, Urbanek H. Involvement of the antioxidative system in tobacco response to fucaric acid treatment. J Phytopathol 1999; 147: 385-90.
Lafuente MT, Belver A, Guye MG, Saltveit ME. Effect of temperature conditioning on chilling injury of cucumber cotyledons. Plant Physiol 1991; 95: 443-449.
Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 2003; 54: 109-136.
Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Juan B. Barroso JB, Corpas FJ. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 2011; 6: 789-793.
Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 2008; 20:786-802.
Leshem YY, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 1996; 148: 258-263.
Leshem YY, Wills RR, Ku VVV. Evidence for the function of the free radical gas - nitric oxide (NO·) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 1998; 36: 825-833.
Leshem YY, Pinchasov Y. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). J Exp Bot 2000; 51: 1471-1473.
Leshem Y. Nitric oxide in plants. 2001. Kluwer Academic Publishers, London, UK.
Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 2011; 6: 789-793.
Liao WB, Zhang ML and Yu JH. Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hort. 2013; 155: 30-38.
Lin CC, Hsu, YT and Kao CH. Ammonium ion, ethylene and NaCl-induced senescence of detached rice leaves. Plant Growth Regul. 2002: 37(1).
Lin A, Wang Y, Tang J, Xue P, Li C and Liu L. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 2012; 158: 451-464.
Lindermayr C, Gerhard Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 2005; 137: 921-930.
Lindermayr C, Saalbach G, Bahnweg G, Durner J. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 2006; 281:4285-4291.
Liu F, Guo FQ. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLOS ONE 2013; 8: e56345.
Liu X, Zhang S, Whitworth RJ, Stuart JJ and Chen MS. Unbalanced activation of glutathione metabolic pathways suggests potential involvement in plant defense against gall midge Mayetiola destructor in wheat. Sci Rep. 2015; 5:8092.
Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. Journal of Amino Acids. 2012; 736837.
Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: The Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol 2010; 154: 733-743.
Maiti D, Sarkar TS and Ghosh S. Detection of S-nitrosothiol and nitrosylated proteins in Arachis hypogea functional nodule: response of the nitrogen fixing symbiont. Plos One. 2012; 7(9): e45526.
Manjunatha G, Gupta KJ, Lokesh V, Mur LAJ, Neelwarne B. Nitric oxide counters ethylene effects on ripening fruits. Plant Signal Behav 2012; 7: 476-483.
McBride AG, Borutaite V and Brown GC. Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. BBA MOL BASIS DIS 1999; 1454 (3): 275-288.
Meiser J, Lingam S and Buer P. 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol. 157 (4). 2154-2166.
Mhamdi A, Queval G, Chauch S, Vanderauwera S, Van Breusegem F and Noctor G. Catalase function in plants: a focus on Arabidopsis mutant as stress-mimic models. J Exp Bot 2010; 61: 4197-220.
Misra AN, Misra M, Singh R. Nitric oxide: A ubiquitous signaling molecule with diverse role in plants. Afri J Plant Sci 2011; 5: 57-74.
Mishina T, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Envir 2007; 30: 39–52.
Molassiotis A, Fotopoulos V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal Behav 2011; 6: 210-214.
Mondal K, Mahotra SP, Jain V, Singh R. Antioxidant systems in ripening tomato fruits. Biol. Plant. 2004; 48: 49-53.
Murphy E, Kohr M, Sun J, Nguyen T and Steenbergen C. S-nitrosylation: a radical way to protect the heart. J. Mol. Cell. Cardiol. 2012; 52(3): 568-77.
Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 2002; 53: 1237-1247.
Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants. New Phytol 2003; 159: 11-35.
Ni W, Trelease RN and Eising R. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J 1990; 269: 233-8.
Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z and Krupinska K. Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J Plant Physiol 2009; 166: 1057-68.
Ninnemann H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 1996; 64: 393-398.
Niu FYH and Guo FQ. Nitric oxide regulates dark-induced leaf senescence through EIN2 in Arabidopsis. J Int Plant Biol. 2012; 54(8): 526-525.
Osawa Y, Lowe ER, Everet AC, Anwar Y, Dunbar and Billecke SS. Proteolytic degradation of nitric oxide synthase: effect of inhibitors and role of hsp90-based chaperones. Perpect Pharmacol 2003; 304: 493-497.
Ortega-Galisteo AP, Rodrı´guez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 2012; 63: 2089-2103.
Ötvös K, Pasternak TP, Miskolczi P, Domoki M, Dorjgotov D. Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J 2005; 43: 849-860.
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol 2002; 129: 954-956.
Planchet E, Gupta JK, Sonoda M, Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 2005; 41: 732-743.
Planchet E, Kaiser WM. Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 2006; 57: 3043-3055.
Poór P, Kovács J, Szopkó D, Tari I. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 2013; 250: 273-284.
Prado AM, Porterfield DM, Feijo JA. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 2004; 131: 2707-2714.
Queval G, Jaillard D, Zechmann B and Noctor G. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ. 2011; 34:21-32.
Rosales EP, Iannone MF, Groppa MD, Benavides MP. Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 2011; 49: 124e130.
Rudell RD and Mattheis PJ. Nitric oxide and nitric treatments reduce ethylene evolution from apple fruit disks. Horti Sci 2006; 41: 1462-5.
Reddy YV and Srivastava GC. Superoxide dismutase and peroxidase activities in ripening mango (Mangifera indica L) fruits. Indian J. Plant Physiol. 2003; 8:115-119.
Sakajo S, Nakamura K and Asahi T. Increase in catalase mRNA in wounded sweet potato tuberous root tissue. Plant Cell Physiol 1987; 28: 919-24.
Shen CY. Molecular cloning of mitogen-activated protein kinase cDNA and study of ethylene signaling in senescent sweet potato leaves. 2011. Master thesis, National Sun Yat-sen University, Kaohsiung, Taiwan.
Shi S, Wang G, Wang Y, Zhang L. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 2005; 13: 1-9.
Simontacchi M, Jasid S, Puntarulo S. Nitric oxide generation during early germination of sorghum seeds. Plant Sci 2004; 167: 839-847.
Skadsen RW, Schulze-Lefert P and Herbst JM. Molecular cloning, characterization and expression analysis of two catalase lysozyme genes in barley. Plant Mol Biol 1995; 29: 1005-14.
Snedden WA and Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Physiol 2001; 151 (1): 35-66.
Sriyalli S and Khanna-Chopra R. Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem. 2009; 57(8): 663-70.
Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78: 931-936.
Stöhr C. Nitric oxide – A product of plant nitrogen metabolism. Plant Cell Monogr 2006; 6: 15-34.
Stöhr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots. J Exp Bot 2006; 57: 463-470.
Stuehr DJ. Mammalian nitric oxide synthases. Biochem Biophys Acta 1999; 1411: 217-230.
Suzuki N, Koussevitzky S, Mittler R and Miller G. ROS and redox signaling in the response of plants to abiotic stress. Plant Cell and Environ 2012; 35: 259-270.
Szabo C, Ischiropoulos H and Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics.NPG. 2007; 6: 662-680.
Tu J, Shen WB and Xu LL. 2003. Regulation of nitric oxide in the aging process of wheat leaves. Act Bot Sinica 45 (9): 1055-1062
Tung YT, Wu JH, Huang CY, Kuo YH and Chang ST 2009. Antioxidant activity and phytochemical characteristics of extracts from Acacia confusa bark. Bioresour Technol 100: 509-514
Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 2002; 163: 515-523.
Wang LCK, Li H, Ecker JR. Ethylene Biosynthesis and Signaling Networks. Plant Cell 2002; S131–S151.
Wang P, Du Y, Li Y, Ren D, Song CP. Hydrogen peroxide-mediated activation of MAP Kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 2010; 22:2981-2998.
Wang Y, Lin A, Loake GJ and Chu C. H2O2-induced leaf cell death and the crosstalk of rective nitric/oxygen species. J. Integr. Plant Biol. 2013; 55: 202-208.
Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H and Gu Y. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L) Gaud under cadmium stress. Environ Sci Pollut Res Int. 2015; 22(5):3489-97
Wu SD, Cloning and characterization of ethephon-inducible genes from sweet potato leaves. 2010. Master thesis, National Sun Yat-sen University, Kaohsiung, Taiwan.
Xie Y, Mao Y, and Shen W. Roles of NA/NR/NOA1-dependent nitric oxide and HY1 expression in the modulation of Arabidopsis tolerance. 2013. J. Exp. Bot. 64(10):3045-3060.
Xu S, Guerra D, Lee U, Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Frontier Plant Sci 2013; 4: 430.
Yang T and Pooviah BW. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 2002; 99: 4097-102.
Yang T, Peng H, Whitaker BD and Conway WS. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biology 2012; 12: 19.
Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol 2003; 6: 79-84.
Zhang Y, Liu J, Liu Y. Nitric oxide alleviates the growth inhibition of maize seedlings under salt stress. J Plant Physiol Mol Biol 2004; 30: 455-459.
Zhang B, Wang H, Wang P and Zhang H. Involvement of nitric oxide synthase-dependent nitric oxide and exogenous nitric oxide in alleviating NaCl induced osmotic and oxidative stress in Arabidopsis thaliana. Afr J Agric Res. 2010; 5(13): 1713-1721.
Zhao M, Zhao X, Wu Y, Zhang L Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J. Plant Physiol 2007a; 164: 737-745.
Zhu S, Sun L, Zhou J. Effects of different nitric oxide application on quality of kiwifruit during 20°C storage. Int J Food Sci Technol 2010; 45:245-251.
Zhu SH, Zhou J. Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem 2007; 100: 1517-1522.
Zimmermann P, Heinlein C, Orendi G and Zentgarf U. Senescence-specific regulation of catalase in Arabidopsis thaliana (L) Heynh. Plant Cell Environ 2006; 29: 1049-60.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code