Responsive image
博碩士論文 etd-0706115-093828 詳細資訊
Title page for etd-0706115-093828
論文名稱
Title
具有N型通道和隔離氧化層之新型垂直式電晶體在單電晶體動態隨機存取記憶體之應用
Novel Vertical Transistor with N-channel and Isolation Oxide for 1T-DRAM Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-06
關鍵字
Keywords
隔離氧化層、浮體效應、超薄本體、無接面通道、垂直電晶體、單電晶體動態隨機存取記憶體
junctionless channel, floating-body effect, isolation oxide, vertical transistor, ultra-thin body, 1T-DRAM
統計
Statistics
本論文已被瀏覽 5632 次,被下載 19
The thesis/dissertation has been browsed 5632 times, has been downloaded 19 times.
中文摘要
在本篇論文中,我們提出了兩種適用於超薄本體(Ultra-Thin Body)的SOI架構:分別為具有N型通道與隔離氧化層之垂直式電晶體(Vertical Transistor with N-channel and Isolation Oxide, NCIOVT)和具有N型通道與溝槽之垂直式電晶體(Vertical Transistor with N-channel and Trench, NCTVT),並將其應用在單電晶體動態隨機存取記憶體(One Transistor Dynamic Random Access Memory, 1T-DRAM)。
傳統1T-DRAM在微縮時會面臨電荷儲存區域不足與超耦合效應(Super-coupling Effect),所以我們提出垂直式架構,在相同面積下能往高度延展,比起平面式元件多了延伸的儲存區域,而且隔離氧化層結構可以將元件操作區域和儲存區域做物理性分離,讓儲存電荷遠離PN界面進而降低復合速率。由模擬結果顯示,在單端汲極偏壓操作下的NCIOVT元件和NCTVT元件表現,因垂直式架構延長通道的關係,可程式規劃窗(Programming Window, PW)較小,但在寫入狀態後,隔離氧化層架構能讓NCIOVT元件和NCTVT元件的資料保存時間(Data Retention Time, RT)分別達到660.54 ms和683.48 ms的表現,為國際半導體技術發展藍圖規劃的10.32倍和10.68倍。同時,於高溫狀態下的PW表現,NCIOVT元件僅有35 %左右的退化幅度,而NCTVT元件反而因為無接面式通道而上升,在溫度變化方面具有抵抗力。不僅如此,NCIOVT元件和NCTVT元件於電路陣列干擾方面,不但可以選擇改變偏壓來改善元件的干擾情形,而且也擁有低功率消耗、高寫入速度和可微縮化的優點,成為了解決1T-DRAM微縮議題的極佳方案。
Abstract
In this thesis, we propose vertical transistor with n-channel and isolation oxide(NCIOVT) 1T-DRAM and vertical transistor with n-channel and trench(NCTVT) 1T-DRAM with ultra-thin body structure for silicon-on-insulator. As the conventional 1T-DRAM scales down, it faces the shortcoming of an insufficient charge storage region and Super-coupling Effect. In this work, we use the vertical structure to enlarge the height and have more extended stored charge region than the planar structure in the same area. The isolation oxide not only can separate physically the device operation and charge storage region but also greatly decrease the junction of the P-type body region and N-channel region, and even suppresses the recombination rate. Due to the extended channel of the vertical structure, the programming performances of the NCIOVT device and the NCTVT device for single drain bias operation are not well enough. Nevertheless, a longer retention time is obtained by the advantage of the isolation oxide. The retention time of the NCIOVT device and the NCTVT device are 660.54 ms and 683.48 ms respectively, and the respective performance are 10.32 and 10.68 times bigger than the value of ITRS. At high temperature condition, the NCIOVT and the NCTVT show great thermal immunity for PW. The PW value of the NCIOVT device degrades only 35 %. Besides, the increase of drain current with temperature tends to increase the PW for junctionless channel. Moreover, the NCIOVT device and the NCTVT device also have the advantages of low power consumption, high operation speed, and scalability. Meanwhile, we can improve the disturb condition by altering operation voltage. We believe that the NCIOVT device and the NCTVT device become the more promising structures for next generation 1T-DRAM.
目次 Table of Contents
論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract iv
第一章 導論 1
1.1 研究背景 1
1.2 論文回顧 4
1.3 動機 11
第二章 操作原理 13
2.1 物理機制探討 13
2.2 元件操作說明 14
2.2.1 撞擊游離機制 14
2.2.2 閘極引致汲極漏電流機制 14
2.2.3 整合式閘極引致汲極漏電流與撞擊游離之機制 15
第三章 元件製程設計 17
3.1 理想模擬元件 17
3.1.1 NCIOVT模擬製程 17
3.1.2 NCTVT模擬製程 18
3.2 實作元件 20
3.2.1 NCIOVT實際製程 20
3.2.2 NCTVT實際製程 22
第四章 研究方法與結果討論 24
4.1 物理機制模型 24
4.2 元件架構說明 26
4.2.1 NCIOVT元件之架構 27
4.2.2 NCTVT元件之架構 30
4.3 NCIOVT元件之基本電性 32
4.3.1 輸出特性曲線 32
4.3.2 輸入特性曲線 34
4.4 NCTVT元件之基本電性 35
4.4.1 輸出特性曲線 35
4.4.2 輸入特性曲線 37
4.5 NCIOVT之元件記憶體特性 38
4.5.1 NCIOVT之可程式規劃視窗 (Programming Window, PW) 38
4.5.2 NCIOVT之單/雙端汲極偏壓操作及其特性表現討論 41
4.5.3 NCIOVT之可程式規劃窗 (Programming Window, PW) 44
4.5.4 NCIOVT之資料保存時間 (Data Retention Time, RT) 47
4.5.5 NCIOVT之溫度改變對元件記憶體特性的影響 51
4.5.6 NCIOVT之寫入速度 54
4.5.7 NCIOVT之功率消耗 58
4.5.8 NCIOVT之元件於電路陣列干擾探討 61
4.6 NCTVT之元件記憶體特性 65
4.6.1 NCTVT之可程式規劃視窗 (Programming Window, PW) 65
4.6.2 NCTVT之單/雙端汲極偏壓操作及其特性表現討論 69
4.6.3 NCTVT之可程式規劃窗 (Programming Window, PW) 73
4.6.4 NCTVT之資料保存時間 (Data Retention Time, RT) 77
4.6.5 NCTVT之溫度改變對元件記憶體特性的影響 80
4.6.6 NCTVT之寫入速度 83
4.6.7 NCTVT之功率消耗 87
4.6.8 NCTVT之元件於電路陣列干擾探討 90
4.7 實作結果與量測 94
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 99
參考文獻 100
附錄 108
參考文獻 References
[1] M. Kawano, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, and S. Matsui, “Three-Dimensional Packaging Technology for Stacked DRAM With 3-Gb/s Data Transfer,” IEEE Trans. Electron Devices, vol. 55, no. 7, pp. 1614–1620, Jul. 2008.
[2] Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou, and M. Kawano, “Vertical Integration of Stacked DRAM and High-Speed Logic Device Using SMAFTI Technology,” IEEE Trans. Advanced Packaging, vol. 32, no. 3, pp. 657–665, Aug. 2009.
[3] S. Inoue, K. Hieda, A. Nitayama, F. Horiguchi, and F. Masuoka, “A spread stacked capacitor (SSC) cell for 64 Mbit DRAMs,” in IEDM Tech. Dig., Dec. 1989, pp. 31–34.
[4] Y.-H. Wu, C.-M. Chang, C.-Y. Wang, C.-K. Kao, C.-M. Kuo, A. Ku, and T. Huang, “Augmented Cell Performance of NO-Based Storage Dielectric by N2O-Treated Nitride Film for Trench DRAM,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 149–151, Feb. 2008.
[5] H. Sunami, “The Role of the Trench Capacitor in DRAM Innovation,” IEEE Solid-State Circuits Society Newsletter, vol. 13, pp. 42–44, 2008.
[6] P. Gutmann, “Data remanence in semiconductor devices,” in Proc. 10th USENIX Security Symposium, Aug. 2001, pp. 39–54.
[7] H.-J. Wann and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., Dec. 1933, pp. 635–638.
[8] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001, pp.153–154.
[9] J. T. Lin, K. D. Huang, and B. T. Jheng, “Performances of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors With Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222–1225, Nov. 2008.
[10] J. W. Han, C. J. Kim, S. J. Choi, D. H. Kim, D. I. Moon, and Y. K. Choi, “Gate-to-Source/Drain Nonoverlap Device for Soft-Program Immune Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 5, pp. 544–546, May. 2009.
[11] J. W. Han, S. W. Ryu, D. H. Kim, and Y. K. Choi, “Polysilicon Channel TFT With Separated Double-Gate for Unified RAM (URAM)—Unified Function for Nonvolatile SONOS Flash and High-Speed Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 601–607, Mar. 2010.
[12] M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. On Nanotechnology, vol. 11, no. 2, pp. 355–359, Mar. 2012.
[13] E. Yoshida, and T. Tanaka, “A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” in IEDM Tech. Dig., Dec. 2003, pp. 37.6.1–37.6.4.
[14] E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692–697, Apr. 2006.
[15] J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 2, pp. 189–191, Feb. 2009.
[16] K.-H. Park, C. M. Park, S. H. Kong, and J.-H. Lee, “Novel Double-Gate 1T-DRAM Cell Using Nonvolatile Memory Functionality for High-Performance and Highly Scalable Embedded DRAMs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 614–619, Mar. 2010.
[17] Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-Based 1T DRAM Cells,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 565–567, May. 2009.
[18] J.-W. Han, D.-I. Moon, D.-H. Kim and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp.1108–1110, Oct. 2009.
[19] D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 909–911, Sep. 2010.
[20] G. Giusi, M. A. Alam, F. Crupi, and S. Pierro, “Bipolar Mode Operation and Scalability of Double-Gate Capacitorless 1T-DRAM Cells,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1743–1750, Aug. 2010.
[21] H. Tao, J. Hou, and Z. Shao, “Novel operation mechanism of capacitorless DRAM cell using impact ionization and GIDL effects,” Computer Technology and Application, vol. 4, no. 7, pp. 351–355, Jul. 2013.
[22] S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaubo, “Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects,” Solid State Electron., vol. 51, no. 2, pp. 239–244, Feb. 2007.
[23] S. Gundapaneni, M. Bajaj, R. K. Pandey, K. V. R. M. Murali, S. Ganguly, and A. Kottantharayil, “Effect of band-to-band tunneling on junctionless transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1023–1029, Apr. 2012.
[24] C. W. Lee, R. Yan, I. Ferain, A. Kranti, N. D. Akhvan, P. Rasavi, R. Yu, and J. P. Colinge, “Nanowire zero-capacitor DRAM transistors with and without junctions,” in Proc. 10th IEEE NANO., 2010, pp. 242–245.
[25] W. Lee, and W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. On Nanotechnology, vol. 10, no. 3, pp. 462–466, May. 2011.
[26] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Capacitor-less A-RAM SOI memory: Principles, scaling and expected performance,” Solid State Electronic, vol. 59, no. 1, pp. 44–49, May. 2011.
[27] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2371–2377, Aug. 2011.
[28] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “A-RAM: Novel capacitorless DRAM memory,” in Proc. IEEE Int. SOI Conf., 2009, pp. 1–2.
[29] N. Rodriguez, C. Navarro, F. Gamiz, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Experimental Demonstration of Capacitorless A2RAM Cells on Silicon-on-Insulator,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1717–1719, Dec. 2012.
[30] N. Rodriguez, F. Gamiz, C. Marquez, C. Navarro, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Fabrication and Validation of A2RAM Memory Cells on SOI and Bulk Substrates,” in IEEE IMW, 2013, pp. 135–138.
[31] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2371–2377, Aug. 2011.
[32] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu, " Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET's, ” IEEE Trans.Electron Devices, vol. 44, no. 4, pp. 627–634, 1997.
[33] S.-H. Oh, D. Monroe, and J. M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs, ” IEEE Electron Device Lett., vol.21, no. 9, pp.445–447, Sep. 2000.
[34] S. Veeraraghavan and J. G. Fossum, “Short-channel effects in SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 36, pp. 522–528, Mar. 1989.
[35] D. Pham, L. Larson, and J. -W. Yang, “FinFET Device Junction Formation Challenges,” Int. Workshop on Junction Technol., pp. 73–77, 2006.
[36] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. IEEE, vol. 89, no. 3, pp. 259–288, Mar. 2001.
[37] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett., vol. 94, p. 053511, Feb. 2009.
[38] J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B. J. Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM,” in IEDM Tech. Dig., Dec. 2008, pp. 1–4.
[39] J.-W. Han, S.-W. Ryu, C.-J. Kim, S.-J. Choi, S. Kim, J.-H. Ahn, D.-H. Kim, K. J. Choi, B. J. Cho, J.-S. Kim, K. H. Kim, G.-S. Lee, J.-S. Oh, M.-H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy-Band-Engineered Unified-RAM (URAM) Cell on Buried Si1−yCy Substrate for Multifunctioning Flash Memory and 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 641–647, Apr. 2009.
[40] J. S. Shin, H. Bae, J. Jang, D. Yun, J. Lee, E. Hong, D. H. Kim, and D. M. Kim, “A Novel Double HBT-Based Capacitorless 1T DRAM Cell With Si/SiGe Heterojunctions,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 850–852, Jul. 2011.
[41] A. Pal, A. Nainani, S. Gupta, and K. C. Saraswat, “Performance Improvement of One-Transistor DRAM by Band Engineering,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 29–31, Jan. 2012.
[42] H. Jeong, K.-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, “A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET With Vertical Channel (SGVC Cell),” IEEE Trans. Electron Devices, vol. 6, no. 3, pp. 352–357, May. 2007.
[43] M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswa, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 615–617, May. 2008.
[44] N. Z. Butt and M. A. Alam, “Scaling Limits of Double-Gate and Surround-Gate Z-RAM Cells,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2255–2262, Sep. 2007.
[45] A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proc. Euro. Solid-State Device Res. Conf. (ESSDERC), Sep. 2010, pp. 357–360.
[46] C. Y. Chen, J. T. Lin, M. H. Chiang, and K. Kim, “High-performance ultra-low power junctionless nanowire FET on SOI substrate in subthreshold logic application,” in Proc. SOI Conf., Oct. 2010, pp. 1–2.
[47] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, “Reduced electric field in junctionless transistors,” Appl. Phys. Lett., vol. 96, pp. 073510, Feb. 2009.
[48] F. Morishita, K. Suma, M. Hirose, T. Tsuruda, Y. Yamaguchi, T. Eimori, T. Oashi, K. Arimoto, Y. Inoue, and T. Nishimura, “Leakage mechanism due to floating body and countermeasure on dynamic retention mode of SOI-DRAM,” Symp. VLSI Tech., pp. 141–142, June. 1995
[49] A. Wei, M. J. Sherony, and D. A. Antoniadis, “Effect of floating-body charge on SOI MOSFET design,” IEEE Trans. Electron Devices, vol. 45, pp. 430–438, Feb. 1998
[50] A. O. Adan, K. Higashi, and Y. Fukushima, “Analytical threshold voltage model for ultrathin SOI MOSFETs including short-channel and floating-body effects,” IEEE Trans. Electron Devices, vol. 46, pp. 729–737, Apr. 1999.
[51] K. Kato, T. Wada, and K. Taniguchi, “Analysis of kink characteristics in silicon-on-insulator MOSFET’s using two-carrier modeling,” IEEE Trans. Electron Devices, vol. ED-32, pp. 458–462, Feb. 1985.
[52] T. Hamamoto, Y. Minami, T. Shino, A. Sakamoto, T. Higashi, N. Kusunoki, K. Fujita, K. Hatsuda, T. Ohsawa, N. Aoki, H. Tanimoto, M. Morikado, H. Nakajima, K. Inoh, and A. Nitayama, “A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology Node for Embedded Applications,”in IEEE Int. Conf. ICDT, 2006, pp. 1–6.
[53] A. Nazarov, J.-P. Colinge, F. Balestra, J.-P. Raskin, F. Gamiz, and V.S. Lysenko, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Springer Science, pp. 393–421, 2011.
[54] C.Hu, “Hot-electron effects in MOSFET’s,” in IEDM Tech. Dig., Dec. 1983, pp. 176–181.
[55] F. C. Hsu and S. Tam, “Relationship Between MOSFET Degradation and Hot-Electron-Induced Interface-State Generation,” IEEE Electron Device Lett., vol. EDL-5, pp. 50–52, Feb. 1984.
[56] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, an K. W. Terrill, “Hot-electron induced MOSFET degradation–Model, monitor, and improvement,” IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 375–385, Feb. 1985.
[57] S. Puget, G. Bossu, C. F.-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J.-M. Portal, R. Bouchakour, and T. Skotnicki, “FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications,” in IEEE IMW, May 2009, pp. 1–2.
[58] Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc.
[59] A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, and F. Templier, ““Hump” characteristics and edge effects in polysilicon thin film transistors,” Appl. Phys. Lett., vol. 104, no.12, pp. 124511-1–1245-6, 2008.
[60] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Towards Software Power Minimization,” IEEE Trans. VLSI Systems, Vol. 2, pp. 437–445, Dec. 1994.
[61] (2014). The International Technology Roadmap for Semiconductors (ITRS) [Online]. Available: http://public.itrs.net
[62] C.-W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.-P. Colinge, “High-Temperature Performance of Silicon Junctionless MOSFETs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp.620–625, Mar. 2010.
[63] 呂正傑, 詹世雄, “鐵電記憶體簡介,” 國家奈米實驗室-奈米通訊期刊, 第5卷, 第四期, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code