Responsive image
博碩士論文 etd-0706115-193433 詳細資訊
Title page for etd-0706115-193433
論文名稱
Title
微型核糖核酸5端跟3端在乳癌中選擇的偏好
MicroRNA Showed Changes in Arm Selection Preference in Breast Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-10
關鍵字
Keywords
微型核糖核酸193a-5p/-3p、微型核糖核酸、乳癌、微型核糖核酸324-5p/-3p、臂端選擇改變
miR-324-5p/-3p, miRNAs arm switch, miR-193a-5p/-3p, MicroRNAs, breast cancer
統計
Statistics
本論文已被瀏覽 5690 次,被下載 37
The thesis/dissertation has been browsed 5690 times, has been downloaded 37 times.
中文摘要
微型核糖核酸是從先導體(precursor)3臂端跟5臂端產出的20到24個核苷酸的短片段非編碼核糖核酸。目前文獻指出,在不同的組織、發育階段跟物種中,成熟微型核糖核酸對於先導微型核糖核酸(precursor miRNA)會有不同的臂端選擇,然而在乳癌中,微型核糖核酸臂端選擇改變(arm switch)的功能跟機制仍然不清楚。本研究,我們利用生物資訊以及實驗的方法去評估乳癌中微型核糖核酸臂端選擇改變(arm switch)的情形,利用癌症基因組圖譜(TCGA)資料庫分析,全面地分析在乳癌中微型核糖核酸臂端選擇的改變,我們找到幾個在乳癌中臂端選擇會發生明顯改變的微型核糖核酸。進一步驗證miR-193a跟miR-324發現5p跟3p的使用率,在乳癌的臨床檢體中明顯發生變動。並且miR-193a-5p/-3p 跟 miR-324-3p的表現量在乳癌檢體中明顯下降,而miR-324-5p的表現量卻是有意義的增加。利用異位表達實驗, miR-193a-5p/-3p跟miR-324-5p/-3p會抑制細胞生長,而miR-193a-3p 跟 miR-324-5p/-3p會抑制爬行以及侵入能力,但miR-193a-5p沒有參與細胞的爬行以及侵入。另外,內生性的miR-193a-5p/-3p跟 miR-324-5p/-3p會因為送進去個別人造目標基因(五個串聯的標的位置),導致有意義的提高他們的表現量。因此臂端選擇改變的現象可能是癌化的過程中微型核糖核酸的目標基因變多造成,臂端選擇偏好的機制可以用來調控微型核糖核酸的功能,以及增加訊息核糖核酸 (mRNA)網絡的複雜度,總之本研究中,我們發現在乳癌中微型核糖核酸臂端存在選擇改變是非常普遍的,同時提出微型核糖核酸參與乳癌發展的一個新見解。
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs (20~24 nt) which can be derived from 3' and/or 5' ends of the precursor. Recent literatures suggested that different arms of precursor miRNA can be selected cross different tissues, developmental stages or species. However, the biological function and mechanism of miRNA arm switch remain unclear in breast cancer. In this study, we assessed the roles of miRNA arm switch in breast cancer by bioinformatics and experimental approaches. By comprehensively identifying the miRNA arm switch in the breast cancer by analyzing The Cancer Genome Atlas database (TCGA database), we identified several miRNAs showing significant changes in arm selection in breast cancer compared with adjacent normal tissues. Further examining the expression levels of miR-193a-5p/-3p and miR-324-5p/-3p revealed that the usage of -5p and -3p arm significantly changed in breast cancer compared with adjacent normal tissues. Furthermore, the expression levels of miR-193a-5p/-3p and miR-324-3p significant decreased but miR-324-5p significantly increased in breast cancer samples. Ectopic expression of miR-193a-5p and miR-193a -3p、miR-324-5p and miR-324-3p reduced breast cancer cell growth and migration/invasive ability, whereas miR-193a-5p suppressed breast cancer growth without contributing to breast cancer cell motility. The endogenous levels of miR-193a-5p, -3p, miR-324-5p and -3p significantly increased by transfecting their artificial targets (five tandem target sites) into breast cancer cells. Taken together, the "arm switching" phenomenon may result from the amount of their target genes during breast cancer progression. The arm selection preference of miRNA change may be a way to modulate miRNA function which further complicates the mRNA regulatory network. Our findings suggest that miRNA arm switch is remarkably prevalent in breast cancer, which emerges a new insight in breast cancer progression.
目次 Table of Contents
論文審定書 i
誌謝 ii
Abbreviations iii
Abstract in Chinese v
Abstract in English vi-vii
Contents viii-ix
1. Introduction 1
1.1 Breast cancer 1
1.2 MicroRNAs 2
1.3 MicroRNA in Breast cancer 3
1.4 MicroRNA arm switch 3
2. Specific Aims 5
3. Materials and Methods 6
4. Result 13
4.1 Identifly miRNA arm switch using TCGA database 13
4.2 The 5p/3p arm selection of mir-193a and mir-324 in breast cancer cell line
13
4.3 miR 193a-5p/-3p and miR-324-5p/-3p contribute to breast cancer cell growth 15
4.4 Ectopic expression of miR-193a-3p and miR-324-5p/-3p contribute to breast cancer cell motility 16
4.5 Target-mediated miRNA protection (TMMP) involved in miR-#-5p/-3p ratios changes 17
5. Discussion 20
6. References 25
7. Tables 30
8. Figures 37
9. Supplementary data 54
參考文獻 References
1. Tan, Y.O., et al., The prevalence and assessment of ErbB2-positive breast cancer in Asia: a literature survey. Cancer, 2010. 116(23): p. 5348-57.
2. SEER Program (National Cancer Institute (U.S.)), et al., SEER cancer statistics review, in NIH publication. 1993, U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute: Bethesda, Md. p. v.
3. Koboldt, D.C., Comprehensive molecular portraits of human breast tumours. Nature, 2012. 490(7418): p. 61-70.
4. Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004. 304(5670): p. 594-6.
5. Newman, M.A. and S.M. Hammond, Emerging paradigms of regulated microRNA processing. Genes Dev, 2010. 24(11): p. 1086-92.
6. Trabucchi, M., et al., How to control miRNA maturation? RNA Biol, 2009. 6(5): p. 536-40.
7. Slezak-Prochazka, I., et al., MicroRNAs, macrocontrol: regulation of miRNA processing. Rna, 2010. 16(6): p. 1087-95.
8. Fernandez-Valverde, S.L., R.J. Taft, and J.S. Mattick, Dynamic isomiR regulation in Drosophila development. Rna, 2010. 16(10): p. 1881-8.
9. Guo, L. and Z. Lu, Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem, 2010. 34(3): p. 165-71.
10. Cloonan, N., et al., MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol, 2011. 12(12): p. R126.
11. Guo, L., et al., A comprehensive survey of miRNA repertoire and 3' addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS One, 2011. 6(6): p. e21072.
12. Li, S.C., et al., Interrogation of rabbit miRNAs and their isomiRs. Genomics, 2011. 98(6): p. 453-9.
13. Guo, L., et al., Consistent isomiR expression patterns and 3' addition events in miRNA gene clusters and families implicate functional and evolutionary relationships. Mol Biol Rep, 2012.
14. Humphreys, D.T., et al., Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One, 2012. 7(2): p. e30933.
15. Li, S.C., et al., miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics, 2012. 13 Suppl 1: p. S13.
16. Chan, S.H., et al., miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res, 2008. 28(2A): p. 907-11.
17. Chen, Z., et al., miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res, 2010. 29: p. 151.
18. Hausler, S.F., et al., Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer, 2010. 103(5): p. 693-700.
19. Theodore, S.C., et al., MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn Dis, 2010. 20(1 Suppl 1): p. S1-96-100.
20. Yu, S., et al., miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res, 2010. 70(14): p. 6015-25.
21. Volinia, S., et al., Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci U S A, 2012. 109(8): p. 3024-9.
22. Gravgaard, K.H., et al., The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat, 2012.
23. Yan, L.X., et al., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna, 2008. 14(11): p. 2348-60.
24. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70.
25. Kong, W., et al., MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol, 2008. 28(22): p. 6773-84.
26. Adams, B.D., H. Furneaux, and B.A. White, The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol, 2007. 21(5): p. 1132-47.
27. Cui, W., et al., miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting 3'UTR of CD46. Cancer Biol Ther, 2010. 10(3): p. 232-41.
28. Kastl, L., I. Brown, and A.C. Schofield, miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat, 2012. 131(2): p. 445-54.
29. Tan, Y., et al., Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol, 2009. 10: p. 12.
30. Rand, T.A., et al., Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 2005. 123(4): p. 621-9.
31. Leung, C.M., et al., Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment. Oncol Rep, 2014. 31(3): p. 1067-78.
32. Cheng, W.C., et al., YM500: a small RNA sequencing (smRNA-seq) database for microRNA research. Nucleic Acids Res, 2013. 41(Database issue): p. D285-94.
33. Chang, H.T., et al., Comprehensive analysis of microRNAs in breast cancer. BMC Genomics, 2012. 13 Suppl 7: p. S18.
34. Griffiths-Jones, S., et al., MicroRNA evolution by arm switching. EMBO Rep, 2011. 12(2): p. 172-7.
35. Marco, A., et al., Functional shifts in insect microRNA evolution. Genome Biol Evol, 2010. 2: p. 686-96.
36. Li, S.C., et al., MicroRNA 3' end nucleotide modification patterns and arm selection preference in liver tissues. BMC Syst Biol, 2012. 6 Suppl 2: p. S14.
37. Guo, L. and Z. Lu, The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One, 2010. 5(6): p. e11387.
38. Jagadeeswaran, G., et al., Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 2010. 11: p. 52.
39. Chatterjee, S., et al., Target-mediated protection of endogenous microRNAs in C. elegans. Dev Cell, 2011. 20(3): p. 388-96.
40. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
41. Li, Y., et al., Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res, 2010. 70(20): p. 7894-904.
42. Li, Y.M., et al., Epithelial-mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell Death Dis, 2013. 4: p. e831.
43. Chatterjee, S. and H. Grosshans, Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature, 2009. 461(7263): p. 546-9.
44. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140-4.
45. Choo, K.B., et al., MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. J Biomed Sci, 2014. 21: p. 95.
46. Li, G., et al., MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur J Cancer, 2013. 49(11): p. 2596-607.
47. Yang, Y., et al., A novel miR-193a-5p-YY1-APC regulatory axis in human endometrioid endometrial adenocarcinoma. Oncogene, 2013. 32(29): p. 3432-42.
48. Yu, T., et al., MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene, 2015. 34(4): p. 413-23.
49. Wu, H.H., W.C. Lin, and K.W. Tsai, Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med, 2014. 16: p. e1.
50. Ory, B., et al., A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest, 2011. 121(2): p. 809-20.
51. Lv, L., et al., The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis, 2014. 5: p. e1402.
52. Iliopoulos, D., A. Rotem, and K. Struhl, Inhibition of miR-193a expression by Max and RXRalpha activates K-Ras and PLAU to mediate distinct aspects of cellular transformation. Cancer Res, 2011. 71(15): p. 5144-53.
53. Salvi, A., et al., Effects of miR-193a and sorafenib on hepatocellular carcinoma cells. Mol Cancer, 2013. 12: p. 162.
54. Wang, J., et al., Demethylation of miR-9-3 and miR-193a genes suppresses proliferation and promotes apoptosis in non-small cell lung cancer cell lines. Cell Physiol Biochem, 2013. 32(6): p. 1707-19.
55. Deng, H., et al., miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway. Mol Cancer, 2014. 13: p. 234.
56. Deng, H., et al., The miR-193a-3p regulated PSEN1 gene suppresses the multi-chemoresistance of bladder cancer. Biochim Biophys Acta, 2015. 1852(3): p. 520-8.
57. Deng, W., et al., Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem, 2015. 35(5): p. 1677-88.
58. Liang, H., et al., miR-193a-3p functions as a tumor suppressor in lung cancer by down-regulating ERBB4. J Biol Chem, 2015. 290(2): p. 926-40.
59. Shi, H.Y., et al., Breast cancer surgery volume-cost associations: hierarchical linear regression and propensity score matching analysis in a nationwide Taiwan population. Surg Oncol, 2013. 22(3): p. 178-83.
60. Zhang, P., et al., Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol, 2014. 20(34): p. 12241-8.
61. Guo, L., et al., Selected isomiR expression profiles via arm switching? Gene, 2014. 533(1): p. 149-55.
62. Kang, S.M., et al., Up-Regulation of microRNA* Strands by Their Target Transcripts. Int J Mol Sci, 2013. 14(7): p. 13231-40.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code