Responsive image
博碩士論文 etd-0706118-101235 詳細資訊
Title page for etd-0706118-101235
論文名稱
Title
具全方位應用導向性之磁通切換永磁電動機最佳化設計
Optimal Designs of Application-oriented Flux-switching Permanent-magnet Motors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-06
關鍵字
Keywords
磁通切換永磁電動機、電動機車、膝關節醫療行動輔具、應用導向
EV traction motor application, flux-switching permanent-magnet motor, personal mobility-assistive device application, application requirements
統計
Statistics
本論文已被瀏覽 5663 次,被下載 2
The thesis/dissertation has been browsed 5663 times, has been downloaded 2 times.
中文摘要
本研究旨在針對磁通切換永磁電動機架構從應用層面之需求進行深入地評估設計。研究首先以電動機運轉模式將應用層面作一個分水嶺,並使用磁通切換永磁電動機作為本研究主架構,進行後續優化設計以及評估開發的核心,過程將分別探究短時間運轉需求瞬間大扭力的致動器;以及連續長時間運轉需求高操作效率的動力驅動源,而擇定的對應標的分別為醫療行動輔具之致動器與電動機車之動力驅動源。研究中將依循市場領導品牌所採用的電動機之機構尺寸及相關電氣規範為限制條件,探究磁通切換永磁電動機在不同結構型式組合下對電磁性能的影響,工作過程將完整地涵蓋電磁場有限元素分析、電機性能評估以及田口法最佳化設計,並考量到應用導向訴求之期望不同,所對應的具關鍵影響性的參數設計將有各自的優化尺寸,除此之外更實現了穿戴式膝關節醫療行動輔具之致動器的實體結構並且實際測量硬體之操作性能。本研究希望透過詳細的設計流程以及深入的電磁性能比較與評估之後,能夠為磁通切換永磁電動機之架構開發上提供更合適且強而有力的依循指引。
Abstract
The purpose of this research is to provide the design of a flux-switching permanent-magnet motor (FSPM) in terms of the application requirements. By classifying the applications into two categories base on the same physical and operational constraints, the large-torque actuator for short-period operation that being generally adopted for personal mobility-assistive device application, and the high-efficiency mechanism for continuous operation that being commonly needed for EV traction motor application (Scooter), are respectively selected for investigation.

  Based on the results from finite element analyses (FEA), the procedure completely includes feasibility assessments of four rotor structures and two winding configurations. In addition to the FEA emulated performance outputs about the respective optimal FSPM designs by Taguchi's method, a laboratory prototype of FSPM for personal mobility-assistive device application was constructed and the related experimental measurements have been conducted to validate the design adequacies. Based on these detailed formulations and performance evaluations, it is confident that adequate design guidance for the developments of FSPMs can thus be supplied.
目次 Table of Contents
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
符號對照表 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究重點與目標 4
第二章 磁通切換永磁電動機結構概述 6
2.1 磁通切換永磁電動機背景概述 6
2.2 磁通切換永磁電動機定/轉子極數組合 10
2.3 磁通切換永磁電動機之線圈連接 11
第三章 行動輔具之致動器結構設計與性能分析 13
3.1 設計之前提限制與結構選定 13
3.2 磁通切換永磁電動機結構性能評估 17
3.2.1 內轉子與外轉子型式之評估 17
3.2.2 四種轉子齒數結構之評估 19
3.3 以田口法進行最佳化結構設計 20
3.3.1 田口法簡介 21
3.3.2參數水準階數選擇 21
3.3.3 平均值與變異數分析 26
3.4 行動輔具之致動器性能評估 31
3.5 行動輔具之致動器實體操作性能量測 34
第四章 電動機車動力驅動源結構設計與性能分析 37
4.1 設計之前提限制及初步規格選定 37
4.2 電動機車動力驅動源之目標需求性能 41
4.3 磁通切換永磁電動機轉子極數及繞組配置評估 45
4.4以田口法進行磁通切換永磁電動機最佳化設計 49
4.4.1參數與水準階數選擇 50
4.4.2平均值與變異數分析 58
4.5 電動機車動力驅動源電磁性能評估 65
第五章 結論與建議 67
參考文獻 68
作者自述 73
參考文獻 References
[1] United Nations. Department of International Economic and Social Affairs, and United Nations. Population Division. “World population prospects: The 2017 revision,” United Nations, Department of Economic
and Social Affairs, pp. 1-53, 2017.
[2] K.-T. Song, Y.-L. Chien, and Susanto, “Development of an assistive torque generation system for a lower limb exoskeleton,” Proc. of 2016 International Conference on System and Engineering (ICSSE), pp. 1-4,
Puli, Taiwan, July. 2016.
[3] J.-H. Kim, M.-H. Shim, D.-H. Ahn, B.-J. Son, S.-Y. Kim, D.-Y. Kim, Y.-S. Baek, and A.-K. Cho, “Design of a knee Exoskeleton using foot pressure and knee torque sensors,” Sage, vol. 12, no. 8, Jan. 2015.
[4] Maxon Motor. (2017, Nov. 3). Driven by Precision, Maxon EC flat motors [Online]. Available: https://www.maxonmotor.com/maxon/view/content/ec-flat-motors.
[5] R.-W. Cao, M. Cheng, C. Mi, W. Hua, X. Wang, and W.-X. Zhao, “Modeling of a complementary and modular linear flux-switching permanent motor for urban rail transit applications,” IEEE Trans. Energy
Conversion, vol. 27, no. 2, pp. 489-497, Jun. 2012.
[6] R.-W. Cao, C. Mi, and M. Cheng, “Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV and PHEV applications,” IEEE Trans. Magnetics, vol.
48, no. 8, pp. 2,374-2,384, Aug. 2012.
[7] W.-X. Zhao, M. Cheng, W. Hua, H.-G. Jia, R.-W. Cao, and W. Wang, “Remedial operation of a fault-tolerant flux-switching permanent magnet motor for electric vehicle applications,” Proc. of 2010 IEEE Vehicle
Power and Propulsion Conference, pp. 1-6, Lille, France, Sept. 2010.
[8] I. A. A. Afinowi, Z.-Q. Zhu, D. Wu, Y. Guan, J. C. Mipo, and P. farah, “Flux-weakening performance comparison of conventional and E-core switched-flux permanent magnet machines,” Proc. of 2014 17th
International Conference on Electrical Machines and Systems (ICEMS), pp. 522-528, Hangzhou, China, Oct. 2014.
[9] M.-Y. Dai, L. Quan, X.-Y. Zhu, Z.-X. Xiang, and H.-W. Zhou, “Design of a sandwiched flux switching permanent magnet machine with outer-rotor configuration,” Proc. of 2014 IEEE Conference and Expo
Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1-5, Beijing, China, Sept. 2014.
[10] W.-Z. Fei, P. C. K. Luk, J.-X. Shen, Y. Wang, and M.-J. Jin, “A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications,” IEEE Trans. Industry
Applications, vol. 48, no. 5, pp. 1,496-1,506, Sept./Oct. 2012.
[11] D. Dietz and A. Binder, “Critical review on the benefits of C- and E-core flux-switching-PM-machines,” Proc. of 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), pp. 226-
234, Dubrovnik, Croatia, Oct. 2017.
[12] J.-T. Chen, Z.-Q. Zhou, S. Iwasaki, and R. Deodhar, “Comparison of losses and efficiency in alternate flux-switching permanent magnet machines,” Proc. of the XIX International Conference on Electrical
Machines (ICEM), pp. 1-6, Rome, Italy, Sept. 2010.
[13] X.-Y. Zhu, Z.-M. Shu, L. Quan, Z.-X. Xiang, and X.-Q. Pan, “Design and multicondition comparison of two outer-rotor flux-switching permanent-magnet motors for in-wheel traction applications,” IEEE Trans.
Industrial Electronics, vol. 64, no. 8, pp. 6,137-6,148, Aug. 2017.
[14] M. Jenal, E. Sulaiman, and R. Kumar, “Effects of rotor pole number in outer rotor permanent magnet flux switching machine for light weight electric vehicle,” Proc. of 4th IET Clean Energy and Technology
Conference (CEAT), pp. 1-6, Kuala Lumpur, Malaysia, Nov. 2016.
[15] G. Lei, Y.-G. Guo, J.-G. Zhu, and W. Xu, “An optimal flux-switching permanent magnet machine for hybrid electric vehicles,” Proc. of 2015 IEEE International Conference on Applied superconductivity and
Electromagnetics Devices (ASEMD), pp. 104-105, Shanghai, China, Nov. 2015.
[16] D. Bobba, G. Bramerdorfer, Y.-J. Li, T. A. Burress, and B. Sarlioglu, “Stator tooth and rotor pole shaping for low pole flux switching permanent magnet machines to reduce even order harmonics in flux linkage,”
Proc. of 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1-8, Milwaukee, WI, USA, Sept. 2016.
[17] S. Murata et.al., “Relationship between the 10-second chair stand test (Frail CS-10) and physical function among the frail elderly,” Physiotherapy Science, vol. 25, no. 3, pp. 431-435, 2010 (in Japanese).
[18] A. M. Omekanda, “Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods,” IEEE Trans. Industry Applications, vol. 42, no. 2, pp. 473-478, Mar./Apr. 2006.
[19] J.-C. Song, F. Dong, J.-W. Zhao, S.-L. Lu, S.-K. Dou, and H. Wang, “optimal design of permanent magnet linear synchronous motors based on Taguchi method,” IET Electric Power Applications, vol. 11, no. 1,
pp. 41-48, Jan. 2017.
[20] W.-J. Zhu, X.-Y. Yang, and Z.-Y. Lan, “Structure optimization of high-speed BLDC motor using Taguchi method,” Proc. of 2010 International Conference on Electrical and Control Engineering, pp. 4,247-4,249,
Wuhan, China, June 2010.
[21] C.-C. Hwang, L.-Y. Lyu, C.-T. Liu, and P.-L. Li, “Optimal design of an SPM motor using genetic algorithms and taguchi method,” IEEE Trans. Magnetics, vol. 44, no. 11, pp. 4,325-4,328, Nov. 2008.
[22] 電動機車聯合測試服務中心 / 合格產品,http://www.tes.org.tw/list.htm,2018/07。
[23] 電動機車聯合測試服務中心 / 資料下載 / 電動機車性能及安全測試程序手冊,http://www.tes.org.tw/download.htm,2014/10。
[24] S. Kachapomkul, S. Kreuawan, N. Chayopitak, P. Somsiri, P. Champa, P. Jitkreeyan, N. Nulek, Y. Thinphowong, and S. Karukanan, “A design of switched reluctance motor and drive system for high performance
electric motorcycle,” Proc. of 2015 18th International Conference on Electrical Machines and Systems (ICEMS), pp. 888-893, Pattaya, Thailand, Oct. 2015.
[25] S.-P. Cheng and C.-C. Hwang, “Design of high-performance spindle motor with concentrated windings and unequal tooth widths,” IEEE Trans. Magnetics, vol. 43, no. 2, pp. 802-804, Feb. 2007.
[26] C.-C. Hwang, S.-P. Cheng, and C.-M. Chang, “Design of high-performance spindle motors with concentrated windings,” IEEE Trans. Magnetics, vol. 41, no. 2, pp. 971-973, Feb. 2005.
[27] L. Alberti and N. Bianchi, “Theory and design of fractional-slot multilayer windings,” IEEE Trans. Industry Applications, vol. 49, no. 2, pp. 841-849, Mar./Apr. 2013.
[28] J.-T. Chen, and Z.-Q. Zhu, “Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 293-302, Jun.
2010.
[29] C.-C. Hwang, C.-M. Chang, S.-S. Hung, and C.-T. Liu, “Design of high performance flux switching PM machines with concentrated windings,” IEEE Trans. Magnetics, vol. 50, no. 1, Art ID 4002404, Jan. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code