Responsive image
博碩士論文 etd-0706118-103940 詳細資訊
Title page for etd-0706118-103940
論文名稱
Title
口腔癌的侵襲表現跟肝癌衍生生長因子的相關性: 從臨床觀察到分子調控機制
Invasive Tumor Behavior of Oral Cancer and Its Association with Hepatoma-Derived Growth Factor: from clinical observation to molecular regulatory mechanism
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-02
繳交日期
Date of Submission
2018-08-06
關鍵字
Keywords
肝癌衍生長因子、口腔癌、頰膜癌、血管新生因子、預後、復發模式、缺氧誘導因子
Oral cancer, Vascular endothelial growth factor (VEGF), Hepatoma-derived growth factor (HDGF), pattern of failure, Hypoxia-inducible factor 1α (HIF-1α), Buccal cancer, Prognosis
統計
Statistics
本論文已被瀏覽 5669 次,被下載 43
The thesis/dissertation has been browsed 5669 times, has been downloaded 43 times.
中文摘要
口腔癌是一種具侵襲性的惡性腫瘤,常伴隨著很高的局部復發率及不佳的預後。這篇論文主要是從臨床觀察到分子生物上的表現以及調控的機轉來分析口腔癌侵襲的行為。
局部晚期的口腔癌最主要的治療方式為手術治療,並輔以術後的放射治療。但是口腔癌的侵襲性加上手術後組織解剖上的變化跟淋巴血管引流的改變,讓術後輔助的放射治療非常難以設計。已經有一些非預期跟致死的復發在術後輔助的強度調控放射治療上被注意到。在第一章裡,我們從接受手術後強度調控放射治療的頰膜癌病人上分析復發模式跟相關臨床病理因子。我們發現一開始就有咀嚼肌間隙(masticator space)侵犯是影響復發最重要的因素。因此在設計術後的放射治療應該不只考量手術的範圍,也應該把復發的位置跟模式給考量進去。
肝癌衍生因子(HDGF)參與許多癌化的過程,也在多種的癌症中被視為影響預後的重要因子。在第二章中,我們探討HDGF在口腔癌癌化的角色。我們利用重組腺相關病毒載體(recombinant adenovirus vector)來調節HDGF的濃度,並進一步利用免疫墨點法、腫瘤侵襲試驗(invasion assay),群落形成試驗(colony formation assay)來分析HDGF對腫瘤細胞行為的影響。同時利用免疫組織化學法的組織列陣來分析術後的病理檢體跟HDGF的表現以及其臨床病理因子的關係。
血管新生是腫瘤生長跟轉移所必需的,同時跟血管新生因子還有反血管新生因子的平衡有關。在血管新生因子中,血管新生因子(VEGF)最為重要。在第二章中,HDGF的表現跟VEGF的表現呈現正相關,並跟口腔癌的病人預後有很強的相關性。HDGF被認為可以調控VEGF的上游基因或是VEGF的啟動子。在第三章,我們發了一個新的路徑,在常氧的狀態下,HDGF經由Nucleolin接合後,會活化AKT/HIF-1α 跟 NFκB路徑,進而增加VEGF的表現。
總而言之,在口腔癌的癌化跟血管新生的過程中,HDGF的表現扮演很重要的角色。HDGF的表現不僅跟腫瘤的侵襲性、病人的預後還跟VEGF的調控都息息相關。
Abstract
Oral cancer is aggressive cancer with high locoregional recurrence rates and poor prognosis. The purpose of this dissertation is to analyze the aggressive behavior of oral cancer form the clinical observation to the molecular expression and regulatory mechanism.
The treatment strategy for locally advanced oral cancer is surgery followed by post-operative radiotherapy. The aggressive behavior of oral cancer and the change of anatomic boundaries and lymphovascular drainage after surgery make the design of optimal radiotherapy very challenging. Some unexpected and fetal recurrences have been observed after post-operative intensity-modulated radiotherapy (IMRT). The aim of Chapter 1 is to analyze failure patterns and clinicopathologic prognostic factors in patients with locally advanced buccal cancer after post-operative IMRT. The initial masticator space involvement is revealed as the key factor for disease recurrence. Post-operative IMRT should not include the surgical beds alone, rather should be based on the potential patterns of spread failure
Hepatoma-derived growth factor (HDGF) participates in oncogenic progression and represents a prognostic factor in several types of cancer. Chapter 2 aimed to elucidate the role of HDGF during oral tumorigenesis. HDGF expression and the tumorigenic behaviors in human oral cell lines were investigated by immunoblotting, invasion and colony formation assays. Recombinant adenovirus vectors were employed to modulate the HDGF level in oral cancer cells. Immunohistochemical analysis using tissue microarray (TMA) consisting of surgically resected samples was performed to delineate the correlation between HDGF expression and clinic-pathological parameters.
Angiogenesis is essential for invasive tumor growth and metastasis through perturbing the balance of proangiogenic and antiangiogenic factors. Among the proangiogenic factors, vascular endothelial growth factor (VEGF) is the principal player. HDGF can also stimulate angiogenesis directly and induce VEGF releasing. In Chapter 2, HDGF expression was correlated with VEGF expression and led to the poor prognosis of the oral cancer patient. It is considered that HDGF might regulate the VEGF upstream genes or the VEGF promoters. A new pathway that HDGF activated AKT/HIF-1α and NFκB and then increased VEGF expression through nucleolin binding in a normoxic condition was disclosed in Chapter 3.
In summary, HDGF expression plays an important role in tumorigenesis and angiogenesis of oral cancer, which is associated with the aggressive tumor behavior, poor prognosis, and regulation of VEGF.
目次 Table of Contents
Contents
論文審定書 + i
誌謝 + ii
Abstract + iii
Chinese abstract + iii
English abstract + iv
Introduction + 1
Chapter 1: Patterns of failure after postoperative intensity-modulated radiotherapy for locally advanced buccal cancer: Initial masticator space involvement is the key factor of recurrence + 4
Backgrounds + 5
Materials and Methods + 6
Results + 11
Discussion + 17
Conclusion + 21
Tables + 22
Figures + 27
Supplementary materials + 28
Supplementary Table 1. + 28
Supplementary Figure 1. + 30
Chapter 2: The expression and prognostic significance of hepatoma-derived growth factor in oral cancer + 31
Backgrounds + 32
Materials and Methods + 34
Results + 41
Discussion + 45
Conclusion + 48
Tables + 49
Figures + 54
Chapter 3: Hepatoma-derived growth factor regulates VEGF expression via activation of HIF-1α signaling in oral cancer cells + 61
Backgrounds + 62
Materials and Methods + 64
Results + 66
Discussion + 69
Conclusion + 71
Figures + 72
References + 78
Appendix + 84
Publication + 84
參考文獻 References
1. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161: 851-858.
2. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246: 1309-1312.
3. Funk GF, Karnell LH, Robinson RA, Zhen WK, Trask DK, Hoffman HT. Presentation, treatment, and outcome of oral cavity cancer: a National Cancer Data Base report. Head Neck. 2002;24: 165-180.
4. Ministry of Health and Welfare EY, ROC (Taiwan). 2017 statistics of causes of death. Available from URL: https://dep.mohw.gov.tw/DOS/np-1776-113.html.
5. Chu PC, Hwang JS, Wang JD, Chang YY. Estimation of the financial burden to the National Health Insurance for patients with major cancers in Taiwan. J Formos Med Assoc. 2008;107: 54-63.
6. Brown JS, Shaw RJ, Bekiroglu F, Rogers SN. Systematic review of the current evidence in the use of postoperative radiotherapy for oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2012;50: 481-489.
7. Amit M, Yen TC, Liao CT, et al. Improvement in survival of patients with oral cavity squamous cell carcinoma: An international collaborative study. Cancer. 2013;119: 4242-4248.
8. Yao M, Chang K, Funk GF, et al. The failure patterns of oral cavity squamous cell carcinoma after intensity-modulated radiotherapy-the university of iowa experience. Int J Radiat Oncol Biol Phys. 2007;67: 1332-1341.
9. Gomez DR, Zhung JE, Gomez J, et al. Intensity-modulated radiotherapy in postoperative treatment of oral cavity cancers. Int J Radiat Oncol Biol Phys. 2009;73: 1096-1103.
10. Chen PY, Chen HH, Hsiao JR, et al. Intensity-modulated radiotherapy improves outcomes in postoperative patients with squamous cell carcinoma of the oral cavity. Oral Oncol. 2012;48: 747-752.
11. Chan AK, Huang SH, Le LW, et al. Postoperative intensity-modulated radiotherapy following surgery for oral cavity squamous cell carcinoma: patterns of failure. Oral Oncol. 2013;49: 255-260.
12. Daly ME, Le QT, Kozak MM, et al. Intensity-modulated radiotherapy for oral cavity squamous cell carcinoma: patterns of failure and predictors of local control. Int J Radiat Oncol Biol Phys. 2011;80: 1412-1422.
13. Wan WH, Fortuna MB, Furmanski P. A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J Immunol Methods. 1987;103: 121-129.
14. Chung CH, Bernard PS, Perou CM. Molecular portraits and the family tree of cancer. Nat Genet. 2002;32 Suppl: 533-540.
15. Giltnane JM, Rimm DL. Technology insight: Identification of biomarkers with tissue microarray technology. Nat Clin Pract Oncol. 2004;1: 104-111.
16. Sasaki H, Hoshi H, Hong YM, et al. Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes. J Biol Chem. 1989;264: 17606-17612.
17. Nakamura H, Izumoto Y, Kambe H, et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem. 1994;269: 25143-25149.
18. Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem. 2001;276: 37564-37568.
19. Yang J, Everett AD. Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol. 2007;8: 101.
20. Qiu C, Sawada K, Zhang X, Cheng X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol. 2002;9: 217-224.
21. Stec I, Nagl SB, van Ommen GJ, den Dunnen JT. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett. 2000;473: 1-5.
22. Kishima Y, Yamamoto H, Izumoto Y, et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem. 2002;277: 10315-10322.
23. Abouzied MM, El-Tahir HM, Prenner L, Haberlein H, Gieselmann V, Franken S. Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem. 2005;280: 10945-10954.
24. Chen SC, Hu TH, Huang CC, et al. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget. 2015;6: 16253-16270.
25. Meng J, Xie W, Cao L, Hu C, Zhe Z. shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai). 2010;42: 52-57.
26. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res. 2006;12: 117-122.
27. Chen SC, Kung ML, Hu TH, et al. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. J Pathol. 2012;228: 158-169.
28. Thirant C, Galan-Moya EM, Dubois LG, et al. Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells. 2012;30: 845-853.
29. Zhao J, Ma MZ, Ren H, et al. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res. 2013;19: 3567-3576.
30. Tsai C, Sr., Tai M, Hu T, et al. Expression of hepatoma-derived growth factor in early-stage cervical adenocarcinoma. J Clin Oncol (Meeting Abstracts). 2007;25: 16002-.
31. Hu TH, Huang CC, Liu LF, et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer. 2003;98: 1444-1456.
32. Yoshida K, Tomita Y, Okuda Y, et al. Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol. 2006;13: 159-167.
33. Ren H, Tang X, Lee JJ, et al. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol. 2004;22: 3230-3237.
34. Matsuyama A, Inoue H, Shibuta K, et al. Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res. 2001;61: 5714-5717.
35. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression Level of Hepatoma-Derived Growth Factor Correlates with Tumor Recurrence of Esophageal Carcinoma. Ann Surg Oncol. 2007.
36. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1: 27-31.
37. Okuda Y, Nakamura H, Yoshida K, et al. Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci. 2003;94: 1034-1041.
38. Everett AD, Narron JV, Stoops T, Nakamura H, Tucker A. Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol. 2004;286: L1194-1201.
39. Diaz EM, Jr., Holsinger FC, Zuniga ER, Roberts DB, Sorensen DM. Squamous cell carcinoma of the buccal mucosa: one institution's experience with 119 previously untreated patients. Head Neck. 2003;25: 267-273.
40. Lin CS, Jen YM, Cheng MF, et al. Squamous cell carcinoma of the buccal mucosa: an aggressive cancer requiring multimodality treatment. Head Neck. 2006;28: 150-157.
41. Lip and Oral Cavity. In: Amin MB, Edge, S., Greene, F., et al., editor. AJCC Cancer Staging Manual. New York: Springer, 2017.
42. Som PM, Curtin HD. Parapharyngeal and masticator space lesions. Head and neck imaging. 2003;2: 1955-1987.
43. Harnsberger HR, Macdonald AJ. Diagnostic and surgical imaging anatomy. Brain, head & neck, spine. 1st ed. Salt Lake City: Amirsys, 2006.
44. Liao CT, Chang JT, Wang HM, et al. Surgical outcome of T4a and resected T4b oral cavity cancer. Cancer. 2006;107: 337-344.
45. Liao CT, Ng SH, Chang JT, et al. T4b oral cavity cancer below the mandibular notch is resectable with a favorable outcome. Oral Oncol. 2007;43: 570-579.
46. Trivedi NP, Kekatpure VD, Shetkar G, Gangoli A, Kuriakose MA. Pathology of advanced buccal mucosa cancer involving masticator space (T4b). Indian J Cancer. 2015;52: 611-615.
47. Trivedi NP, Kekatpure V, Kuriakose MA. Radical (compartment) resection for advanced buccal cancer involving masticator space (T4b): our experience in thirty patients. Clin Otolaryngol. 2012;37: 477-483.
48. Liu SY, Lu CL, Chiou CT, et al. Surgical outcomes and prognostic factors of oral cancer associated with betel quid chewing and tobacco smoking in Taiwan. Oral Oncol. 2010;46: 276-282.
49. Studer G, Zwahlen RA, Graetz KW, Davis BJ, Glanzmann C. IMRT in oral cavity cancer. Radiat Oncol. 2007;2: 16.
50. Hao SP, Tsang NM, Chang KP, Chen CK, Huang SS. Treatment of squamous cell carcinoma of the retromolar trigone. Laryngoscope. 2006;116: 916-920.
51. Miller MC, Goldenberg D, Education Committee of the American H, Neck S. AHNS Series: Do you know your guidelines? Principles of surgery for head and neck cancer: A review of the National Comprehensive Cancer Network guidelines. Head Neck. 2017;39: 791-796.
52. Eisbruch A, Marsh LH, Dawson LA, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys. 2004;59: 28-42.
53. Cannon DM, Lee NY. Recurrence in region of spared parotid gland after definitive intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;70: 660-665.
54. Chen AM, Farwell DG, Luu Q, Chen LM, Vijayakumar S, Purdy JA. Marginal misses after postoperative intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2011;80: 1423-1429.
55. Geretschlager A, Bojaxhiu B, Crowe S, et al. Outcome and patterns of failure after postoperative intensity modulated radiotherapy for locally advanced or high-risk oral cavity squamous cell carcinoma. Radiat Oncol. 2012;7: 175.
56. Tart RP, Kotzur IM, Mancuso AA, Glantz MS, Mukherji SK. CT and MR imaging of the buccal space and buccal space masses. Radiographics. 1995;15: 531-550.
57. Wei Y, Xiao J, Zou L. Masticator space: CT and MRI of secondary tumor spread. AJR Am J Roentgenol. 2007;189: 488-497.
58. Kimura Y, Sumi M, Sumi T, Ariji Y, Ariji E, Nakamura T. Deep extension from carcinoma arising from the gingiva: CT and MR imaging features. AJNR Am J Neuroradiol. 2002;23: 468-472.
59. Yousem DM, Chalian AA. Oral cavity and pharynx. Radiol Clin North Am. 1998;36: 967-981.
60. Trotta BM, Pease CS, Rasamny JJ, Raghavan P, Mukherjee S. Oral cavity and oropharyngeal squamous cell cancer: key imaging findings for staging and treatment planning. Radiographics. 2011;31: 339-354.
61. Miyahara M, Tanuma J, Sugihara K, Semba I. Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathologic parameters in oral squamous cell carcinoma. Cancer. 2007;110: 1287-1294.
62. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002;2: 573-583.
63. Li CF, Huang WW, Wu JM, et al. Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the alpha and beta isoforms in gastrointestinal stromal tumors. Clin Cancer Res. 2008;14: 7822-7831.
64. Li SH, Li CF, Sung MT, et al. Skp2 is an independent prognosticator of gallbladder carcinoma among p27(Kip1)-interacting cell cycle regulators: an immunohistochemical study of 62 cases by tissue microarray. Mod Pathol. 2007;20: 497-507.
65. Platz H, Fries R, Hudec M. Retrospective DOSAK Study on carcinomas of the oral cavity: results and consequences. J Maxillofac Surg. 1985;13: 147-153.
66. Brandwein-Gensler M, Teixeira MS, Lewis CM, et al. Oral squamous cell carcinoma: histologic risk assessment, but not margin status, is strongly predictive of local disease-free and overall survival. Am J Surg Pathol. 2005;29: 167-178.
67. Kademani D, Bell RB, Bagheri S, et al. Prognostic factors in intraoral squamous cell carcinoma: the influence of histologic grade. J Oral Maxillofac Surg. 2005;63: 1599-1605.
68. Hiratsuka H, Miyakawa A, Nakamori K, Kido Y, Sunakawa H, Kohama G. Multivariate analysis of occult lymph node metastasis as a prognostic indicator for patients with squamous cell carcinoma of the oral cavity. Cancer. 1997;80: 351-356.
69. Liao CT, Chang JT, Wang HM, et al. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann Surg Oncol. 2008;15: 915-922.
70. Cilley RE, Zgleszewski SE, Chinoy MR. Fetal lung development: airway pressure enhances the expression of developmental genes. J Pediatr Surg. 2000;35: 113-118; discussion 119.
71. Lepourcelet M, Tou L, Cai L, et al. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development. 2005;132: 415-427.
72. Tse GM, Chan AW, Yu KH, et al. Strong immunohistochemical expression of vascular endothelial growth factor predicts overall survival in head and neck squamous cell carcinoma. Ann Surg Oncol. 2007;14: 3558-3565.
73. Johnstone S, Logan RM. Expression of vascular endothelial growth factor (VEGF) in normal oral mucosa, oral dysplasia and oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2007;36: 263-266.
74. Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res. 2005;11: 1434-1440.
75. Kyzas PA, Stefanou D, Agnantis NJ. COX-2 expression correlates with VEGF-C and lymph node metastases in patients with head and neck squamous cell carcinoma. Mod Pathol. 2005;18: 153-160.
76. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15: 290-298.
77. Winquist E, Oliver T, Gilbert R. Postoperative chemoradiotherapy for advanced squamous cell carcinoma of the head and neck: a systematic review with meta-analysis. Head Neck. 2007;29: 38-46.
78. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350: 1945-1952.
79. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350: 1937-1944.
80. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82: 4-6.
81. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991;324: 1-8.
82. Sauter ER, Nesbit M, Watson JC, Klein-Szanto A, Litwin S, Herlyn M. Vascular endothelial growth factor is a marker of tumor invasion and metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 1999;5: 775-782.
83. Boonkitticharoen V, Kulapaditharom B, Leopairut J, et al. Vascular endothelial growth factor a and proliferation marker in prediction of lymph node metastasis in oral and pharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2008;134: 1305-1311.
84. Lin YW, Li CF, Chen HY, et al. The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncol. 2012;48: 629-635.
85. Chen SC, Hu TH, Huang CC, et al. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget.6: 16253-16270.
86. Liu GS, Wu JC, Tsai HE, et al. Proopiomelanocortin gene delivery induces apoptosis in melanoma through NADPH oxidase 4-mediated ROS generation. Free Radic Biol Med.70: 14-22.
87. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6: 203-208.
88. Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol. 2017;335: 56-63.
89. Ridiandries A, Tan JT, Bursill CA. The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci. 2016;17.
90. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6: 389-395.
91. LeBlanc ME, Wang W, Chen X, et al. The regulatory role of hepatoma-derived growth factor as an angiogenic factor in the eye. Mol Vis. 2016;22: 374-386.
92. Kung ML, Tsai HE, Hu TH, et al. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun. 2012;425: 169-176.
93. Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A. 2000;97: 1749-1753.
94. Karar J, Maity A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci. 2011;4: 51.
95. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3: 721-732.
96. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16: 4604-4613.
97. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270: 13333-13340.
98. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997;94: 4273-4278.
99. Tong Q, Zheng L, Lin L, et al. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-kappaB signaling pathway. Respir Res. 2006;7: 37.
100. Gorlach A, Bonello S. The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J. 2008;412: e17-19.
101. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412: 477-484.
102. Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene. 2005;24: 3110-3120.
103. Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005;24: 5552-5560.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code