Responsive image
博碩士論文 etd-0706118-110840 詳細資訊
Title page for etd-0706118-110840
論文名稱
Title
在相同定子結構下設計與評估具共同轉子鐵芯之同步磁阻電動機
Designs and Assessments of Synchronous Reluctance Motors with Common Rotor Iron Core Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-08
關鍵字
Keywords
共同轉子鐵芯、相同定子結構、鐵芯導磁路徑、高效率同步磁阻電動機、導體、磁石
common rotor iron core structure, high-efficiency synchronous reluctance motor, identical stator structure, flux paths, conductors, magnets
統計
Statistics
本論文已被瀏覽 5708 次,被下載 3
The thesis/dissertation has been browsed 5708 times, has been downloaded 3 times.
中文摘要
本研究致力於具低成本且能滿足不同操作需求的高效率同步磁阻電動機共同轉子鐵芯之開發,並以相同定子結構為基礎,提出相應的系統化設計流程。首先透過調整轉子鐵芯導磁路徑的設計,實現高輸出轉矩與低轉矩漣波之目的,接著根據不同操作需求,在轉子磁障中加入磁石或導體,以完成共同轉子鐵芯之架構。過程上分別透過理論與模擬的分析,探討磁石與導體的安置對於電動機之影響,最後藉由實測數據驗證有限元素分析軟體所得出的電動機之運轉性能結果。
Abstract
The purpose of this research is to design a low-cost and high-efficiency synchronous reluctance motor with common rotor iron core structure for various operational requirements. To provide a systematic design based on the identical stator structure, the flux paths in the rotor iron core are first adjusted to achieve high output torque and low torque ripple target. According to various operational specifications, the magnets or conductors are then inserted to the rotor barriers to achieve the respective structural design of the common rotor iron core. During the process, the motor effect of different magnet and conductor arrangement is investigated by theoretical analysis and numerical calculation. Finally, the performance results of the motor design from the finite element analysis are confirmed through experimental measurements.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
符號對照表 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究重點與目標 3
第二章 同步磁阻電動機相關理論 4
2.1 磁阻轉矩 4
2.2 同步磁阻電動機直交軸數學理論 5
2.3 計算同步磁阻電動機直交軸電感值 7
2.4 永久磁石對於同步磁阻電動機之影響 9
2.5 自啟動同步磁阻電動機之等效電路模型 12
第三章 同步磁阻電動機 18
3.1 同步磁阻電動機之結構大小及材料選擇 18
3.2 轉子鐵芯結構之探討 19
3.3 轉子鐵芯與磁障比例之探討 21
3.4 轉子鐵芯導磁路徑的位移對於電動機轉矩漣波之影響 23
第四章 永磁輔助式同步磁阻電動機 29
4.1 永久磁石用量對於電動機穩態性能之影響 29
4.2 永久磁石加工限制對於轉子鐵芯之影響 33
4.3 永久磁石厚度對於電動機穩態性能之影響 34
第五章 自啟動同步磁阻電動機 37
5.1 不同應用之啟動負載曲線 37
5.2 共同轉子鐵芯結構之啟動性能評估 38
5.3 不同導體配置對於電動機啟動性能之影響 40
5.4 實體結構驗證 48
第六章 結論與未來展望 51
參考文獻 52
作者自述 56
參考文獻 References
[1] A. T. De Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond induction motors-technology trends to move up efficiency,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2,103-2,114, May/Jun. 2014.
[2] D. Prieto, B. Daguse, P. Dessante, P. Vidal, and J.-C. Vannier, “Effect of magnets on average torque and power factor of synchronous reluctance motors,” Proc. of 2012 XXth International Conference on Electrical Machines (ICEM), pp. 213-219, Marseille, France Sep. 2012.
[3] T.-A. Huynh, M.-F. Hsieh, K.-J. Shih, and H.-F. Kuo “Design and analysis of permanent-magnet assisted synchronous reluctance motor,” Proc. of 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, pp. 1-6, Aug. 2017.
[4] M. Gamba, G. Pellegrino, A. Vagati, and F. Villata, “Design of a line-start synchronous reluctance motor,” Proc. of 2013 International Electric Machines & Drives Conference (IEMDC), Chicago, IL, USA, pp. 648-655, May 2013.
[5] 滿永奎與邊春元譯,電機原理及驅動分析,清華大學出版社,北京,2015年。
[6] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEE Proc. B, Elect. Power Appl., vol. 140, no. 4, pp. 249-259, Jul. 1993.
[7] S. T. Boroujeni, N. Bianchi, and L. Alberti, “Fast estimation of line-start reluctance machine parameters by finite element analysis,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 1-8, Mar. 2011.
[8] D. Mingardi and N. Bianchi, “FE-aided analytical method to predict the capabilities of line-start synchronous motors,” Proc. of 2014 IEEE Energy Conversion Congress and Exposition(ECCE), pp. 5,123-5,130, Pittsburgh, PA, USA, Sep. 2014.
[9] C.-M. Ong, Dynamic Simulation of Electric Machinery, Upper Saddle River, NJ: Prentice Hall PTR, 1998, pp. 259-340.
[10] G. Dajaku and D. Gerling, “Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines,” IEEE Trans. Magn., vol. 46, no. 9, pp. 3,676-3,683, Sep. 2010.
[11] C.-T. Liu, T.-Y. Luo, C.-C. Hwang, and B.-Y. Chang, ‘‘Field path design assessments of a high-performance small-sower synchronous-reluctance motor,’’ IEEE Trans. Magn., vol. 51, no. 11, Art. ID 8206504, Nov. 2015.
[12] T. Fukami, M. Momiyama, K. Shima, R. Hanaoka, and S. Takata, “Steady-state analysis of a dual-winding reluctance generator with a multiple-barrier rotor,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 492-498, Jun. 2008.
[13] G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1,465-1,474, Mar./Apr. 2015.
[14] Y. Wang, G. Bacco, and N. Bianchi, “Geometry analysis and optimization of PM-assisted reluctance motors,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4,338-4,347, Sep./Oct. 2017.
[15] X. Diao, H. Zhu, Y. Qin, and Y. Hua, “Torque ripple minimization for bearingless synchronous reluctance motor,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, Art. ID 5205505, Apr. 2018.
[16] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, Jan./Feb. 2015.
[17] 呂立洋,應用遺傳演算法與田口法作表面型永磁無刷直流馬達之最佳化設計,逢甲大學電機工程學系碩士論文,2008年6月。
[18] C.-T. Liu, T.-Y. Luo, P.-C. Shih, S.-C. Yen, H.-N. Lin, Y.-W. Hsu, and C.-C. Hwang, “On the design and construction assessment of a permanent magnet assisted synchronous reluctance motor,” IEEE Trans. Magn., vol. 53, no. 11, Art. ID 2002104, Nov. 2017.
[19] K. C. Agrawal, Electrical Power Engineering: Reference & Applications Handbook, Boca Raton: CRC Press, 2007, pp. 47-48.
[20] H.-C. Liu and J. Lee, “Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Trans. Ind. Electronics, vol. 65, no 4, pp. 3,104-3,114, Apr. 2018.
[21] K. Tang, L. Zhou, J. Wang, Y. Xiao, and S. Wang. “Rotor design and optimization of the single-phase line-start synchronous reluctance motor,” Proc. of 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, pp. 1-4, Aug. 2017.
[22] M. Gamba, E. Armando, G. Pellegrino, A. Vagati, B. Janjic, and J. Schaab, “Line-start synchronous reluctance motors: design guidelines and testing via active inertia emulation,” Proc. of 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, pp. 4,820-4,827, Sep. 2015.
[23] V. Abramenko, I. Petrov, and J. Pyrhonen, “Analysis of damper winding designs for direct-on-line synchronous reluctance motor,” Proc. of IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, pp. 1,802-1,809, Oct./Nov. 2017.
[24] M. Cirani, S. Eriksson and J. Thunberg, "Innovative design for flux leakage reduction in IPM machines," IEEE Trans. Ind. Appl., pp. 1,847-1,853, vol. 50, no. 3, May/Jun. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code