Responsive image
博碩士論文 etd-0706118-150059 詳細資訊
Title page for etd-0706118-150059
論文名稱
Title
雙面均含鈍化射極與表面電場之對稱與交叉式太陽能電池
Symmetrical and Crossed Double-sided Passivation Emitter and Surface Field Solar Cells for Bifacial Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-08-06
關鍵字
Keywords
反照率、雙面照光、局部背鈍化、能量增益、雙面射極
bifacial, PERC solar cells, albedo, energy boost, double-sided emitter
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
在本篇論文中,我們提出雙面均含鈍化射極與表面電場之對稱與交叉式太陽能電池且可應用於雙面照光,此兩種新型太陽能電池製程完全匹配於傳統局部背鈍化(Passivated Emitter and Rear Contact)太陽能電池製造流程。我們利用Silvaco TCAD Atlas模擬,並且利用已發表的文章進行參數校正。在理想的反照率條件下,對稱和交叉兩種架構能分別獲得88.78 % 和 106.74 % 能量增益 (energy boost)。然而交叉架構有較好的性能,經過分析後可以發現是因為有環繞電場,能分別獲得 40.18 mA/cm2 短路電流密度、0.67 V 開路電壓、81.07 % 填充因子 和 21.93 % 轉換效率。我們的交叉架構與PERC+ (Passivated Emitter and Rear Contact for bifacial) 相比,不僅改善了低bifaciality,且也分別提升了7.85 % 轉換效率和31.35 % 能量增益在雙面照光之下。在套用實際環境參數的反照率下,交叉架構都能維持優異的性能。在雪的環境下,交叉架構的能量增益可以達到102.06 % ,接近於理想的反照率條件。然而在白沙的反照率條件下,能量增益也能達到77.13 % ,其他反照率較低的環境下也能維持20 % 到30 % 之間。
Abstract
This thesis proposes symmetrical and crossed double-sided passivation emitter and surface field solar cells for bifacial applications which are fully compatible with the Passivated Emitter and Rear Contact (PERC) fabrication process. Our simulations use Silvaco TCAD Atlas, calibrated by real measurements. At an ideal albedo level, these symmetrical and crossed structures boost energy by 88.78 % and 106.74 %, respectively. The reason for the crossed structure’s better performance is that it has a surrounding electric field. The crossed structure also obtains a 40.18 mA/cm2 short-circuit current (Jsc), a 0.67 V open-circuit voltage (Voc), an 81.07 % fill factor (F.F.) and a 21.93 % power conversion efficiency (ƞ). Compared with Passivated Emitter and Rear Contact for bifacial (PERC+), the crossed structure improves low bifaciality factor (ƞ) and increases ƞ by 7.85 % and energy boost by 31.35 % for bifacial. For more-realistic albedo levels, the structure also performs strongly. At the spectral albedo level of snow, the energy boost of the crossed structure is 102.06 %, which is close to the performance at ideal albedo. At the spectral albedo level of white sand, the energy boost is 77.13 %. At lower albedos, the energy boost remains between 20 % to 30 %.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
Contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
Chapter 2 Device Fabrication 7
2.1 Device Simulation 7
2.2 Process Flow of Device 10
Chapter 3 Result and Discussion 12
3.1 Traditional Solar Cell Structure 13
3.2 Symmetrical and Crossed Double-sided Passivation Emitter and Surface Field Solar Cells 15
3.2.1 Distribution of Electron Carrier Density 18
3.2.2 Electric Field Direction 21
3.3 Optimization and Environmental Impact 23
3.3.1 Optimization of Emitter Ratio 23
3.3.2 Optimization of Substrate 27
3.3.2.1 Doping concentration of substrate 27
3.3.2.2 Thickness of substrate 29
3.3.3 Best optimization result 31
3.3.4 Effect of Temperature on Solar Cell 31
3.3.5 Effect of Environments 34
3.4 Comparison of Various Structures 37
3.4.1 Comparison of PERC+ and our structures 37
3.4.2 Performance Simulation for Various Structures 38
3.4.3 Effect of Different Spectral Albedos 40
3.4.4 Effect of Passivation Layer 42
Chapter 4 Conclusion and Future Work 45
4.1 Conclusion 45
4.2 Future Work 46
Reference 47
Apprendix 55
參考文獻 References
[1] S. P.Group, “International Technology Roadmap for Photovoltaic (ITRPV) - Results 2017,” Itrpv, vol. 9, pp. 1–37, 2018.
[2] S. Gatz, H. Hannebauer, R. Hesse, F. Werner, A. Schmidt, T. Dullweber, J. Schmidt, K. Bothe, and R. Brendel, “19.4%-efficient large-area fully screen-printed silicon solar cells,” Physica Status Solidi, vol. 5, no. 4, pp. 147–149, 2011, doi: 10.1002/pssr.201105045.
[3] F. Ye, W. Deng, W. Guo, R. Liu, D. Chen, Y. Chen, Y. Yang, N. Yuan, J. Ding, Z. Feng, P. P. Altermatt, and P. J. Verlinden, “22.13% Efficient industrial p-type mono PERC solar cell,” Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 3360–3365, 2016, doi: 10.1109/PVSC.2016.7750289.
[4] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96–99, 2014, doi: 10.1109/jphotov.2013.2282737.
[5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of More Than 25 % Conversion Heterojunction Solar Cell,” IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433–1435, 2014, doi: 10.1109/JPHOTOV.2014.2352151.
[6] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nature Energy, vol. 2, no. 5, 2017, doi: 10.1038/nenergy.2017.32.
[7] D. M. Chapin, C. S. Fuller, and G. L.Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, no. 5, pp. 676–677, 1954, doi: 10.1063/1.1721711.
[8] A. Luque, A. Cuevas, and J. M. Ruiz, “Double-sided n+-p-n+ solar cell for bifacial concentration,” Solar Cells, vol. 2, no. 2, pp. 151–166, 1980, doi: 10.1016/0379-6787(80)90007-1.
[9] J. M. Gee, K. Schubert, and P. A. Basore, “Emitter wrap-through solar cell,” Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 265–270, 1993, doi: 10.1109/PVSC.1993.347173.
[10] G. Willeke, P. Fath, and E. Bucher, “Progress on the POWER silicon solar cell concept,” Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, pp. 1283–1286, 1994, doi: 10.1109/WCPEC.1994.519964.
[11] R. N. Hall, and T. J. Soltys, “Polka dot concentrator cell,” International Electron Devices Meeting, pp. 550–553, 1980, doi: 10.1109/IEDM.1981.190022.
[12] A.Cuevas, A.Luque, J.Eguren, and J. D. Alamo, “High efficiency bifacial back surface field solar cells,” Solar Cells, vol. 3, no. 4, pp. 337–340, 1981, doi: 10.1016/0379-6787(81)90024-7.
[13] T. S. Boscke, D. Kania, A. Helbig, C. Schollhorn, M. Dupke, P. Sadler, M. Braun, T. Roth, D. Stichtenoth, T. Wutherich, R. Jesswein, D. Fiedler, R. Carl, J. Lossen, A. Grohe, and H.-J. Krokoszinski, “Bifacial n-Type Cells With >20% Front-Side Efficiency for Industrial Production,” IEEE Journal of Photovoltaic, vol. 3, no. 2, pp. 1–4, 2012, doi: 10.1109/JPHOTOV.2012.2236145.
[14] G. G. Untila, T. N. Kost, and A. B. Chebotareva, “Bifacial 8.3%/5.4% front/rear efficiency ZnO: Al/n-Si heterojunction solar cell produced by spray pyrolysis,” Solar Energy, vol. 127, pp. 184–197, 2016, doi: 10.1016/j.solener.2016.01.028.
[15] T. Zarede, H. Lidjici, A. Mahrane, and M. Fathi, “3D Numerical Simulation of Bifacial Heterojunction Silicon p-type Solar Cell,” Silicon, pp. 1–9, 2018, doi: 10.1007/s12633-017-9664-4.
[16] T. Dullweber, C. Kranz, R. Peibst, U. Baumann, H. Hannebauer, A. Fülle, S. Steckemetz, T. Weber, M. Kutzer, M. Müller, G. Fischer, P. Palinginis, and H. Neuhaus, “PERC+: industrial PERC solar cells with rear Al grid enabling bifaciality and reduced Al paste consumption,” Journal of Optoelectronics and Advanced Materials, vol. 15, no. 3–4, pp. 326–334, 2013, doi: 10.1002/pip.2712.
[17] M. Herz, U. Jahn, B. Stridh, L. Frearson, and M. Green, “The PERC+ Cell: a 21%-Efficient Industrial Bifacial PERC Solar Cell,” 31st European Photovoltaic Solar Energy Conference and Exhibition, pp. 2892–2897, 2016, doi: 10.4229/EUPVSEC20152015-2BO.4.3.
[18] S.Gall, S. Gall, A. Lanterne, S. Manuel, V. Sanzone, R. Cabal, Y. Veschetti, A. Bettinelli, H. Robin, P. Lefillastre, and C. Gillot, “High Efficient Industrial N-Type Technology: From Cell to Module,” 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 695–698, doi: 10.4229/28thEUPVSEC2013-2BP.1.4.
[19] M. M. El-Nahass, M. A. Kamel, A. A. Atta, and S. Y. Huthaily, “Fabrication and characterization of DBM/p-Si heterojunction solar cell,” Materials Chemistry and Physics, vol. 137, no. 3, pp. 716–722, 2013, doi: 10.1016/j.matchemphys.2012.09.013.
[20] N. Wöhrle, T. Fellmetha, J. Greulicha, B. Bitnarb, H. Neuhausb, P. Palinginisb, R. Köhlerb, and S. Rein, “Understanding the rear-side layout of p-doped bifacial PERC solar cells with simulation driven experiments,” Energy Procedia, vol. 124, pp. 225–234, 2017, doi: 10.1016/j.egypro.2017.09.258.
[21] J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in Cz-grown silicon,” Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, pp. 13–18, 1997, doi: 10.1109/pvsc.1997.653914.
[22] F. Fertig, J. Greulich, K. Krauß, F. Clement, D. Biro, R. Preu, and S. Rein, “The BOSCO solar cell: Simulation and experiment,” IEEE Journal of Photovoltaics, vol. 4, no. 5, pp. 1243–1251, 2014, doi: 10.1109/jphotov.2014.2333875.
[23] A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal free back reflectors for high efficiency open rear c-Si solar cells,” IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 34–40, 2016, doi: 10.1109/JPHOTOV.2015.2487827.
[24] J. P. Singh, S. Guo, I. M. Peters, A. G. Aberle, and T. M. Walsh, “Comparison of Glass/Glass and Glass/Backsheet PV Modules Using Bifacial Silicon Solar Cells,” IEEE Journal of Photovoltaics, vol. 5, no. 3, pp. 783–791, 2015, doi: 10.1109/jphotov.2015.2405756.
[25] U. A. Yusufoglu, T. M. Pletzer, L. J. Koduvelikulathu, C. Comparotto, R. Kopecek, and H. Kurz, “Analysis of the Annual Performance of Bifacial Modules and Optimization Methods,” IEEE Journal of Photovoltaics, vol. 5, no. 1, pp. 320–328, 2015, doi: 10.1109/jphotov.2014.2364406.
[26] M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Progress in Photovoltaics: Research and Applications, vol. 11, no. 2, pp. 97–104, 2003, doi: 10.1002/pip.464.
[27] A.Richter, M. Hermle, and S. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE Journal of Photovoltaics, vol. 3, no. 4, pp. 1184–1191, 2013, doi: 10.1109/JPHOTOV.2013.2270351.
[28] K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Solar Energy Materials and Solar Cells, vol. 173, pp. 37–42, 2017, doi: 10.1016/j.solmat.2017.06.024.
[29] R. Kopecek, “Bifaciality: One small step for technology, one giant leap for kWh cost reduction,” Photovolt. Int., vol. 26, pp. 32–45, 2014.
[30] R. Energy, and T. Device, “Radiation energy transducing device,” U.S. Patent 3,278,811, Oct. 11, 1966.
[31] T.Dullweber, H. Schulte-Huxel, H. Hannebauer, S. Blankemeyer, U. Baumann, S. Schimanke, R. Witteck, M. Köntges, and R. Brendel, “Bifacial PERC+ solar cells: status of industrial implementation and future perspectives,” Bifi Workshop, 2017.
[32] I. Silvaco, “Atlas User’s Manual,” Silvaco, Inc., no. 408, pp. 567–1000, 2016.
[33] J. Zhao, A. Wang, and M. A. Green, “Emitter design for high‐efficiency silicon solar cells. Part I: Terrestrial cells,” Progress in Photovoltaics: Research and Applications, vol. 1, no. 3, pp. 193–202, 1993, doi: 10.1002/pip.4670010303.
[34] T. C. R. Russell, R. Saive , A. Augusto, S. G. Bowden, and H. A. Atwater, “The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study,” IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1611–1618, 2017, doi: 10.1109/JPHOTOV.2017.2756068.
[35] J.-T. Lin , C.-T. Lee, W.-H. Chen, S. W. Haga, Y.-Y. Hu, and K.-Y. Ho, “Double-Sided Symmetrical and Crossed Emitter Crystalline Silicon Solar Cells with Heterojunctions for Bifacial Applications,” IEEE Journal of Photovoltaics, vol. 8, no. 2, pp. 441–447, 2018, doi: 10.1109/JPHOTOV.2018.2790798.
[36] S. Duttagupta, Z. Hameiri, T. Grosse, D. Landgraf, B. Hoex, and A. G. Aberle, “Dielectric Charge Tailoring in PECVD SiOx/SiNx and Application at the Rear of Al Local Back Surface Field Solar Cells," IEEE Journal of Photovoltaics, vol. 5, no. 4, pp. 1014-1019, 2015, doi: 10.1109/JPHOTOV.2015.2419132.
[37] Y. Chen, Y. Yang, J. K. Marmon, X. Zhang, Z. Feng, P. J. Verlinden, and H. Shen, “Independent Al2O3/SiNx:H and SiO2/SiNx:H Passivation of p+ and n+ Silicon Surfaces for High-Performance Interdigitated Back Contact Solar Cells,” IEEE Journal of Photovoltaics, vol. 7, no. 1, pp. 51–57, 2017, doi: 10.1109/JPHOTOV.2016.2617042.
[38] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim,“Fine Structure Constant Defines Visual Transparency of Graphene,” Science, vol. 320, no. 5881, p. 1308, 2008, doi: 10.1126/science.1156965.
[39] H.‐Y. Park, W.‐S. Jung, D.‐H Kang, J. Jeon, G. Yoo, Y. Park, J. Lee, Y. H. Jang J. Lee, S. Park, H.‐Y. Yu, B. Shin, S. Lee, and J.‐H. Park, “Extremely Low Contact Resistance on Graphene through n-Type Doping and Edge Contact Design,” Advanced Materials, vol. 28, no. 5, pp. 864–870, 2016, doi: 10.1002/adma.201503715
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code