Responsive image
博碩士論文 etd-0706118-175254 詳細資訊
Title page for etd-0706118-175254
論文名稱
Title
以氧化石墨烯/四氧化三鐵複合材料催化反應與吸附去除水中藥品氯苯那敏及亞硝胺生成潛勢
Removals and reaction pathways of chlorpheniramine and nitrosamine-formation potentials by graphene oxide/Fe3O4 composites with catalytic reaction and adsorption
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-08-07
關鍵字
Keywords
四氧化三鐵、氧化石墨烯、類芬頓催化反應、吸附、降解、亞硝胺
Nitrosamine, Graphene oxide, Degradation, Adsorption, Fenton-like catalysis, Iron oxide
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
氧化石墨烯(Graphene oxide,GO)具六角形蜂巢狀二維結構之碳材料,其二維平面結構特性使其擁有高比表面積(2600 m2/g),且GO對重金屬、有機物及無機奈米顆粒等皆具有不錯之吸附效果外,其表面豐富的官能基團與良好電子傳遞特性使GO亦具有作為催化劑之可能性。藥物和個人保健用品(Pharmaceuticals and Personal Care Products,PPCPs)廣泛應用於許多領域,其中常用於預防過敏性疾病之氯苯那敏即為一例,氯苯那敏除自身具環境危害性亦可經由水處理消毒氧化程序反應生成高致癌物亞硝胺,故如何將氯苯那敏自環境中去除便成為重要之環境議題。本研究將氯苯那敏定為目標污染物,探討氧化石墨烯/四氧化三鐵(GO/Fe3O4)複合材料之吸附與催化特性。實驗結果表明,當複合材料中FeCl3與GO重量比為2.5:1、pH 9、H2O2添加1.75 v%、以及反應時間為30分鐘時,MRR(Material removal rate)可達52.27 mg/g,經五次重複反應後仍可去除23.12 mg/g之氯苯那敏;將反應前後GO/Fe3O4以掃描式電子顯微鏡與X射線光電子能譜學分析,發現材料結構受自由基攻擊產生侵蝕,具氫鍵催化(Hydrogen-bond catalysis)能力之氫氧根(O-H)官能基團減少可能為MRR下降之原因。生成潛勢實驗結果表明,吸附與催化降解同時反應之機制可於30分鐘內去除水中95.7%之NDMA(N-Nitrosodimethyl-amine)生成潛勢,即使在16倍氯苯那敏重量之天然有機物(Natural organic matter)濃度干擾下,MRR僅下降37.39%,證實GO/Fe3O4複合材料具實際應用於現場處理水中藥品氯苯那敏與亞硝胺生成潛勢之潛力,本研究亦檢測出幾種氯苯那敏降解中間產物,揭露亞硝胺化合物之反應途徑。
Abstract
Graphene oxide (GO), due to its hexagonal honeycomb and two-dimensional carbon material, is a novel material with a planar structure and high specific surface area (e.g., 2600 m2/g). GO is known to be a good adsorbent for a numner of organic and inorganic materials in water. In addition, a great numer of different types of functional groups and excellent electron-transport property make GO a potential catalyst for oxidation-reudction reactions. Pharmaceuticals and personal care products (PPCPs) are widely used at present. Chlorpheniramine is one PPCP commonly used to prevent allergic diseases. Meanwhile, the adverse effects of the occurrence of chlorpheniramine in the envrionemnt has been reported. More toxic and carcinogenic nitrosamines are formed during disinfection or oxidation of chlorpheniramine in water and wastewater treatments, raising the public concern for these emerging contaminants. In this study, the adsorption of chlorpheniramine toward graphene oxide/iron oxide (GO/Fe3O4) composites and potential catalytic degradation on the surface of the composites were investigated. It is suggested in the results that when the mass ratio of FeCl3 to GO in the composite was 2.5, the MRR (material removal rate) of chlorapheniramine at pH 9 in 30 mins with the addioton of 1.75 v% of H2O2 was 52.27 mg/g. An apprecciable level of chlorpheniramine (23.12 mg/g) was removed even the reused composite was applied. The surfaces of the GO/Fe3O4 composite before and after the reactions were analyzed by using the scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the structure of the composite was changed possibly by the reactions with free radicals. The reduction of hydrogen-oxide (OH) functional group responsible for hydrogen-catalyzed reaction is one possible explanation for the decrease of the MRR. By adsorption and catalytic reaction, more than 95% of N-nitrosodimethylamine (NDMA) formation-potential was removed within 30 min. With a high background intereference (e.g., a natural organic matter concentration 16 times higher than that of chlorpheniramine), the MRR was only decreased by 37.39%, suggesting the feasibility of using this composite on real sites. The possible pathways of degradation of chlorpheniramine and formation of different nitrosamines during adsorption and catalytic reactions in the experiments were proposed.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 本研究之貢獻與重要性 3
第二章 文獻回顧 5
2.1 亞硝胺類化合物 5
2.1.1 亞硝胺之物理化學特性 6
2.1.2 亞硝胺之致癌風險規範 8
2.2 亞硝胺之生成 9
2.2.1 加氯消毒氧化產生亞硝胺 10
2.2.2 臭氧消毒氧化產生亞硝胺 11
2.2.3碳材料表面反應產生亞硝胺 12
2.3 亞硝胺前驅物 13
2.3.1 藥品與個人保健用品(PPCPs) 14
2.3.2 PPCPs流佈 17
2.4 亞硝胺及PPCPS之去除 20
2.4.1 碳材料吸附或降解亞硝胺前驅物 20
2.4.2 高級氧化法處理亞硝胺及其前驅物 21
2.4.3 薄膜去除亞硝胺及其前驅物 22
2.4.4 紫外光(UV)去除亞硝胺 22
2.4.5 生物處理去除亞硝胺及其前驅物 23
2.4.6 PPCPs之生成潛勢與流佈 23
2.5 石墨烯類材料 24
2.5.1 石墨烯類衍生材料之製備方法 25
2.5.2石墨烯類複合材之表面改質 26
2.6 石墨烯類複合材料應用於污染物吸附與降解 27
2.6.1 PPCPs 28
2.6.2重金屬 30
2.6.3染料 31
2.6.4多環芳香烴 31
2.6.5催化降解反應 32
2.7石墨烯類複合材料之環境宿命 32
2.7.1氧化石墨烯之分散與聚合 33
2.7.2 石墨烯類複合材料於環境中之降解 34
2.7.3 石墨烯類複合材料於環境中之還原現象 34
2.8類神經網路之理論應用 36
第三章 研究方法 38
3.1 研究架構 38
3.2 實驗材料與設備 40
3.2.1 材料與試劑 40
3.3 實驗方法設計 45
3.3.1 氧化石墨烯製備 45
3.3.2 GO/Fe3O4複合材料之合成 46
3.3.3 先期實驗 47
3.3.4 GO/Fe3O4複合材料去除氯苯那敏之反應機制探討 48
3.3.5複合材料去除氯苯那敏衍生之亞硝胺生成途徑探討與模擬NOM干擾模式建置 51
3.4亞硝胺分析方法 56
3.4.1 前處理固相萃取方法 56
3.4.2 亞硝胺之儀器分析 57
3.5 氯苯那敏分析 59
3.6品質保證與品質管理 61
3.7石墨烯複合材料之特性分析 62
3.7.1表面結構分析(掃描式電子顯微鏡) 62
3.7.2晶體結構分析(X射線繞射分析儀) 62
3.7.3電子能譜學分析(X射線光電子能譜) 63
3.7.4實驗數據分析 63
第四章 結果與討論 64
4.1 材料特性分析 64
4.2先期實驗測試 73
4.3 GO/FE3O4複合材料去除氯苯那敏之反應機制探討 75
4.4複合材料去除氯苯那敏衍生之亞硝胺生成途徑探討與模擬NOM干擾模式建置 92
第五章 結論與建議 102
5.1 結論 102
5.2 建議 106
參考文獻 108
參考文獻 References
Akhavan, O., Abdolahad, M., Esfandiar, A., Mohatashamifar, M., 2010. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. Journal of Physical Chemistry C 114, 12955-12959.
Akhavan, O., Ghaderi, E., 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano 4, 5731-5736.
Akhavan, O., Ghaderi, E., 2012. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50, 1853-1860.
Al-Khateeb, L.A., Almotiry, S., Salam, M.A., 2014. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical Engineering Journal 248, 191-199.
Andrzejewski, P., Kasprzyk-Hordern, B., Nawrocki, J., 2008. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research 42, 863-870.
Apul, O.G., Wang, Q.L., Zhou, Y., Karanfil, T., 2013. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research 47, 1648-1654.
Asadi-Eydivand, M., Solati-Hashjin, M., Farzadi, A., Osman, N.A.A., 2014. Artificial neural network approach to estimate the composition of chemically synthesized biphasic calcium phosphate powders. Ceramics International 40, 12439-12448.
Barrows, S.E., Cramer, C.J., Truhlar, D.G., Elovitz, M.S., Weber, E.J., 1996. Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environmental Science & Technology 30, 3028-3038.
Begum, P., Ikhtiari, R., Fugetsu, B., 2011. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49, 3907-3919.
Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., Cen, K., 2014. Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific reports 4, 4684.
Boczkaj, G., Fernandes, A., 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal 320, 608-633.
Carballa, M., Omil, F., Lema, J.M., Llompart, M.a., Garcı́a-Jares, C., Rodrı́guez, I., Gomez, M., Ternes, T., 2004. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water research 38, 2918-2926.
Carrasco–Valenzuela, L., Armando Zaragoza–Contreras, E., Vega–Rios, A., 2017. Synthesis of graphene oxide/poly(3,4–ethylenedioxythiophene) composites by Fenton's reagent. Polymer 130, 124-134.
CDPH, 2013. NDMA and Other Nitrosamines - Drinking Water Issues. California Department of Public Health.
CDPH, N., 2009. other Nitrosamines–Drinking Water Issues. California Department of Public Health.
Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.-C., Kim, K.S., 2010. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 4, 3979-3986.
Chen, C., Leavey, S., Krasner, S.W., Suffet, I.H., 2014. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents. Water Research 57, 115-126.
Chen, J., Shepherd, R.L., Razal, J.M., Huang, X., Zhang, W., Zhao, J., Harris, A.T., Wang, S., Minett, A.I., Zhang, H., 2013. Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS applied materials & interfaces 5, 7676-7681.
Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X., 2010a. Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS nano 4, 2822-2830.
Chen, W.-H., Yang, Y.-C., Wang, Y.-H., Li, C.-M., Lin, K.-Y., Lou, J.-C., 2015. Effect of molecular characteristics on the formation of nitrosamines during chlor (am) ination of phenylurea herbicides. Environmental Science: Processes & Impacts 17, 2092-2100.
Chen, W., Yan, L., Bangal, P.R., 2010b. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 114, 19885-19890.
Chen, Z., Valentine, R.L., 2007. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environmental Science & Technology 41, 6059-6065.
Choi, J., Valentine, R.L., 2003. N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine. Environmental Science and Technology, pp. 4871-4876.
Choi, J.H., Valentine, R.L., 2002. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research 36, 817-824.
Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C., Bouchard, D., 2013. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environmental Science & Technology 47, 6288-6296.
Chowdhury, S., Balasubramanian, R., 2014. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Advances in Colloid and Interface Science 204, 35-56.
Chung, K., Lee, C.-H., Yi, G.-C., 2010. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655-657.
Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., Yu, G., 2015. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 119, 1033-1039.
Daughton, C.G., 2003. Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environmental Health Perspectives 111, 757-774.
Deng, X., Lü, L., Li, H., Luo, F., 2010. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials 183, 923-930.
Diagboya, P.N., Olu-Owolabi, B.I., Zhou, D., Han, B.-H., 2014. Graphene oxide–tripolyphosphate hybrid used as a potent sorbent for cationic dyes. Carbon 79, 174-182.
Dimiev, A.M., Alemany, L.B., Tour, J.M., 2013. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. Acs Nano 7, 576-588.
Dotson, A., Westerhoff, P., Krasner, S.W., 2009. Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Science and Technology 60, 135-143.
Durán, A., Monteagudo, J.M., San Martín, I., Merino, S., 2018. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation. Journal of Environmental Management 210, 122-130.
Edwards, M., Topp, E., Metcalfe, C.D., Li, H., Gottschall, N., Bolton, P., Curnoe, W., Payne, M., Beck, A., Kleywegt, S., Lapen, D.R., 2009. Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field. Science of the Total Environment 407, 4220-4230.
Ersan, G., Apul, O.G., Perreault, F., Karanfil, T., 2017. Adsorption of organic contaminants by graphene nanosheets: A review. Water Research.
Esplugas, S., Bila, D.M., Krause, L.G.T., Dezotti, M., 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of hazardous materials 149, 631-642.
Estrada, E., 2000. A computer-based approach to describe the 13C NMR chemical shifts of alkanes by the generalized spectral moments of iterated line graphs. Computers & chemistry 24, 193-201.
Fan, L., Luo, C., Sun, M., Qiu, H., Li, X., 2013. Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces 103, 601-607.
Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-m., Song, L.-P., Wei, F., 2011. Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. Acs Nano 5, 191-198.
Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., Shao, B., 2010. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48, 1686-1689.
Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J.M.D., 2010. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 114, 6426-6432.
Gómez-Pacheco, C., Sánchez-Polo, M., Rivera-Utrilla, J., López-Peñalver, J., 2011a. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical engineering journal 178, 115-121.
Gómez-Pacheco, C.V., Sánchez-Polo, M., Rivera-Utrilla, J., López-Peñalver, J., 2011b. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical Engineering Journal 178, 115-121.
Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., Zhang, X., 2010. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials 22, 2213-2218.
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M., Su, X., 2012. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 368, 540-546.
Geim, A.K., Novoselov, K.S., 2007a. The rise of graphene. Nature Materials 6, 183-191.
Geim, A.K., Novoselov, K.S., 2007b. The rise of graphene. Nature materials 6, 183.
Geim, A.K., Novoselov, K.S., 2007c. The rise of graphene. Nat Mater 6, 183-191.
Girish, C.M., Sasidharan, A., Gowd, G.S., Nair, S., Koyakutty, M., 2013. Confocal Raman Imaging Study Showing Macrophage Mediated Biodegradation of Graphene In Vivo. Advanced Healthcare Materials 2, 1489-1500.
Gollavelli, G., Ling, Y.-C., 2012. Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33, 2532-2545.
Gros, M., Petrović, M., Ginebreda, A., Barceló, D., 2010. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International 36, 15-26.
Guardia, L., Villar-Rodil, S., Paredes, J.I., Rozada, R., Martinez-Alonso, A., Tascon, J.M.D., 2012. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation. Carbon 50, 1014-1024.
Guo, T., Bulin, C., Li, B., Zhao, Z., Yu, H., Sun, H., Ge, X., Xing, R., Zhang, B., 2017. Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe 3 O 4.
Hanigan, D., Zhang, J., Herckes, P., Krasner, S.W., Chen, C., Westerhoff, P., 2012. Adsorption of N-Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon. Environmental Science & Technology 46, 12630-12639.
Harijan, D.K.L., Chandra, V., 2016. Polyaniline functionalized graphene sheets for treatment of toxic hexavalent chromium. Journal of Environmental Chemical Engineering 4, 3006-3012.
Hernando, M.D., Mezcua, M., Fernández-Alba, A.R., Barceló, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69, 334-342.
Hoan, V., Thi, N., Thu, A., Thi, N., Duc, H.V., Cuong, N.D., Quang Khieu, D., Vo, V., 2016. Fe3O4/reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. Journal of Chemistry 2016.
HSDB, 2009. Hazardous Substances Data Bank. Hazardous Substances Data Bank. National Library of Medicine.
Hu, X.-j., Liu, Y.-g., Zeng, G.-m., Wang, H., You, S.-h., Hu, X., Tan, X.-f., Chen, A.-w., Guo, F.-y., 2015. Effects of inorganic electrolyte anions on enrichment of Cu (II) ions with aminated Fe3O4/graphene oxide: Cu (II) speciation prediction and surface charge measurement. Chemosphere 127, 35-41.
Hu, Z., Chen, Y., Hou, Q., Yin, R., Liu, F., Chen, H., 2012. Characterization of graphite oxide after heat treatment. New Journal of Chemistry 36, 1373-1377.
Hummers, W.S., Offeman, R.E., 1958. PREPARATION OF GRAPHITIC OXIDE. Journal of the American Chemical Society 80, 1339-1339.
IARC, 1978. N-Nitrosodi-n-propylamine. In Some N-nitroso Compounds., IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
Iida, H., Takayanagi, K., Nakanishi, T., Osaka, T., 2007. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid and Interface Science 314, 274-280.
Iliuta, M.C., Iliuta, I., Larachi, F.ç., 2000. Vapour–liquid equilibrium data analysis for mixed solvent–electrolyte systems using neural network models. Chemical engineering science 55, 2813-2825.
Kadmi, Y., Favier, L., Wolbert, D., 2015. N-nitrosamines, emerging disinfection by-products of health concern: an overview of occurrence, mechanisms of formation, control and analysis in water. Water Science and Technology: Water Supply 15, 11-25.
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water research 43, 363-380.
Kassaee, M.Z., Motamedi, E., Majdi, M., 2011. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal 172, 540-549.
Kemper, J.M., Walse, S.S., Mitch, W.A., 2010. Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products? Environmental Science & Technology 44, 1224-1231.
Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., de Heer, W., Bongiorno, A., Riedo, E., 2012. Room-temperature metastability of multilayer graphene oxide films. Nature Materials 11, 544-549.
Kim, S.R., Parvez, M.K., Chhowalla, M., 2009. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters 483, 124-127.
Kotchey, G.P., Allen, B.L., Vedala, H., Yanamala, N., Kapralov, A.A., Tyurina, Y.Y., Klein-Seetharaman, J., Kagan, V.E., Star, A., 2011. The Enzymatic Oxidation of Graphene Oxide. Acs Nano 5, 2098-2108.
Krasner, S.W., Mitch, W.A., McCurry, D.L., Hanigan, D., Westerhoff, P., 2013. Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research 47, 4433-4450.
Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N., Amy, G., 2009. Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter. Environmental Science & Technology 43, 2911-2918.
Krauss, M., Longree, P., Dorusch, F., Ort, C., Hollender, J., 2009. Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Research 43, 4381-4391.
Krauss, M., Longree, P., Van Houtte, E., Cauwenberghs, J., Hollender, J., 2010. Assessing the Fate of Nitrosamine Precursors in Wastewater Treatment by Physicochemical Fractionation. Environmental Science & Technology 44, 7871-7877.
Krishnamoorthy, K., Veerapandian, M., Zhang, L.-H., Yun, K., Kim, S.J., 2012. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. The Journal of Physical Chemistry C 116, 17280-17287.
Le Roux, J., Gallard, H., Croué, J.-P., 2011. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water research 45, 3164-3174.
Lee, C., Choi, W., Yoon, J., 2005. UV photolytic mechanism of N-nitrosodimethylamine in water: Roles of dissolved oxygen and solution pH. Environmental Science & Technology 39, 9702-9709.
Lee, C., Yoon, J., Von Gunten, U., 2007. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Research 41, 581-590.
Lei, Y., Chen, F., Luo, Y., Zhang, L., 2014. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal.
Li, C.-M., Chen, C.-H., Chen, W.-H., 2017a. Different influences of nanopore dimension and pH between chlorpheniramine adsorptions on graphene oxide-iron oxide suspension and particle. Chemical Engineering Journal 307, 447-455.
Li, F., Xu, X., Shen, Z., Yang, M., Wang, W., 2015. Cd Powder as a Reductant for Graphene Oxide and a Precursor for CdO/rGO Hybrids with Good Capacitive Performance. Science of Advanced Materials 7, 2410-2419.
Li, J., Zhang, S., Chen, C., Zhao, G., Yang, X., Li, J., Wang, X., 2012. Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles. ACS Applied Materials & Interfaces 4, 4991-5000.
Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., Xia, L., 2013a. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research & Design 91, 361-368.
Liang, S., Min, J.H., Davis, M.K., Green, J.F., Remer, D.S., 2003. Use of pulsed-UV processes to destroy NDMA. Journal American Water Works Association 95, 121-131.
Lijinsky, W., 1999. N-Nitroso compounds in the diet. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 443, 129-138.
Lin, A.Y.-C., Lin, C.-F., Tsai, Y.-T., Lin, H.H.-H., Chen, J., Wang, X.-H., Yu, T.-H., 2010. Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan. Water Science and Technology 62, 2450-2458.
Lin, A.Y.-C., Tsai, Y.-T., Yu, T.-H., Wang, X.-H., Lin, C.-F., 2011. Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment. Desalination and Water Treatment 32, 57-64.
Lin, Y.-C., Lai, W.W.-P., Tung, H.-h., Lin, A.Y.-C., 2015. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment 187, 256.
Lin, Y., Xu, S., Li, J., 2013. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal 225, 679-685.
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., Seto, P., 2006. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment 367, 544-558.
Litter, M.I., 2005. Introduction to photochemical advanced oxidation processes for water treatment. Environmental photochemistry part II. Springer, pp. 325-366.
Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X., Zhang, Q., 2012a. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350-357.
Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y., 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS nano 5, 6971-6980.
Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H., Wu, D., 2012b. Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces 90, 197-203.
Loh, K.P., Bao, Q., Eda, G., Chhowalla, M., 2010. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry 2, 1015.
Luh, J., Marinas, B.J., 2012. Bromide Ion Effect on N-Nitrosodimethylamine Formation by Monochloramine. Environmental Science & Technology 46, 5085-5092.
Lv, G., Liu, L., Li, Z., Liao, L., Liu, M., 2012. Probing the interactions between chlorpheniramine and 2:1 phyllosilicates. Journal of Colloid and Interface Science 374, 218-225.
Lv, G., Wu, L., Li, Z., Liao, L., Liu, M., 2014a. Binding sites of chlorpheniramine on 1:1 layered kaolinite from aqueous solution. Journal of Colloid and Interface Science 424, 16-21.
Lv, G., Wu, L., Li, Z., Liao, L., Liu, M., 2014b. Binding sites of chlorpheniramine on 1: 1 layered kaolinite from aqueous solution. Journal of colloid and interface science 424, 16-21.
Ma, F., Wan, Y., Yuan, G., Meng, L., Dong, Z., Hu, J., 2012. Occurrence and Source of Nitrosamines and Secondary Amines in Groundwater and its Adjacent Jialu River Basin, China. Environmental Science & Technology 46, 3236-3243.
Mahadevi, A.S., Sastry, G.N., 2013. Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chemical Reviews 113, 2100-2138.
Matsumoto, Y., Koinuma, M., Ida, S., Hayami, S., Taniguchi, T., Hatakeyama, K., Tateishi, H., Watanabe, Y., Amano, S., 2011. Photoreaction of Graphene Oxide Nanosheets in Water. The Journal of Physical Chemistry C 115, 19280-19286.
McDonald, J.A., Harden, N.B., Nghiem, L.D., Khan, S.J., 2012. Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry. Talanta 99, 146-154.
Mesarič, T., Sepčič, K., Piazza, V., Gambardella, C., Garaventa, F., Drobne, D., Faimali, M., 2013. Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of Amphibalanus amphitrite larvae. Chemistry and Ecology 29, 643-652.
Mitch, W.A., Gerecke, A.C., Sedlak, D.L., 2003a. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research 37, 3733-3741.
Mitch, W.A., Sedlak, D.L., 2004. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environmental Science & Technology 38, 1445-1454.
Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L., Sedlak, D.L., 2003b. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering Science 20, 389-404.
Mota, A., Albuquerque, L., Beltrame, L.C., Chiavone-Filho, O., Machulek Jr, A., Nascimento, C., 2009. Advanced oxidation processes and their application in the petroleum industry: a review. Brazilian Journal of Petroleum and Gas 2.
Nguyen, L.V., Busquets, R., Ray, S., Cundy, A.B., 2017. Graphene oxide-based degradation of metaldehyde: Effective oxidation through a modified Fenton’s process. Chemical Engineering Journal 307, 159-167.
NIEA, 2005a. 水質檢測方法總則(NIEA W102.51C). 行政院環保署環境檢驗所.
NIEA, 2005b. 環境檢驗方法偵測極限測定指引(NIEA-PA107). 行政院環境保護署環境檢驗所.
NIEA, 2005c. 環境檢驗檢量線製備及查核指引. 行政院環保署環境檢驗所.
NIH, 2011. 12th Report on Carcinogens (RoC). National Toxicity Program, Department of Health and Human Services, National Institute of Human Health Sciences, National Institute of Health.
Norouzbahari, S., Shahhosseini, S., Ghaemi, A., 2015. Modeling of CO2 loading in aqueous solutions of piperazine: application of an enhanced artificial neural network algorithm. Journal of Natural Gas Science and Engineering 24, 18-25.
Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., 2012. A roadmap for graphene. Nature 490, 192-200.
Onesios, K.M., Jim, T.Y., Bouwer, E.J., 2009. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20, 441-466.
Oskoei, V., Dehghani, M., Nazmara, S., Heibati, B., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K., 2016. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. Journal of Molecular Liquids 213, 374-380.
Padhye, L., Luzinova, Y., Cho, M., Mizaikoff, B., Kim, J.-H., Huang, C.-H., 2011a. PolyDADMAC and Dimethylamine as Precursors of N-Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Technology 45, 4353-4359.
Padhye, L., Wang, P., Karanfil, T., Huang, C.H., 2010. Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to N-Nitrosamines. Environmental Science & Technology 44, 4161-4168.
Padhye, L.P., Hertzberg, B., Yushin, G., Huang, C.-H., 2011b. N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Technology 45, 8368-8376.
Pan, N., Guan, D.B., Yang, Y.T., Huang, Z.L., Wang, R.B., Jin, Y.D., Xia, C.Q., 2014. A rapid low-temperature synthetic method leading to large-scale carboxyl graphene. Chemical Engineering Journal 236, 471-479.
Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X.-q., Yang, S., Wen, B., 2013. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51, 156-163.
Peng, X., Ou, W., Wang, C., Wang, Z., Huang, Q., Jin, J., Tan, J., 2014. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Science of The Total Environment 490, 889-898.
Phillips, P.J., Smith, S.G., Kolpin, D.W., Zaugg, S.D., Buxton, H.T., Furlong, E.T., 2010. Method Description, Quality Assurance, Environmental Data, and other Information for Analysis of Pharmaceuticals in Wastewater-Treatment-Plant Effluents, Streamwater, and Reservoirs, 2004-2009. U.S. Geological Survey Open-File Report 2010-1102, 36 p.
Power, P.P., 1999. π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements. Chemical Reviews 99, 3463-3504.
Poyatos, J.M., Muñio, M., Almecija, M., Torres, J., Hontoria, E., Osorio, F., 2010. Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, and Soil Pollution 205, 187.
Pozzi, R., Bocchini, P., Pinelli, F., Galletti, G.C., 2011. Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry. Journal of Chromatography A 1218, 1808-1814.
Ramesha, G.K., Kumara, A.V., Muralidhara, H.B., Sampath, S., 2011. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science 361, 270-277.
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268-1287.
Rizzo, L., Fiorentino, A., Grassi, M., Attanasio, D., Guida, M., 2015. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity. Journal of Environmental Chemical Engineering 3, 122-128.
Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R., 2017. Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal 323, 361-380.
Roux, J.L., Gallard, H., Croué, J.-P., Papot, S., Deborde, M., 2012. NDMA formation by chloramination of ranitidine: kinetics and mechanism. Environmental science & technology 46, 11095-11103.
Ruiz de Arcaute, C., Soloneski, S., Larramendy, M.L., 2018. Synergism of mixtures of dicamba and 2,4-dichlorophenoxyacetic acid herbicide formulations on the neotropical fish Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environmental Pollution 236, 33-39.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors. nature 323, 533.
Salas, E.C., Sun, Z., Luttge, A., Tour, J.M., 2010. Reduction of Graphene Oxide via Bacterial Respiration. Acs Nano 4, 4852-4856.
Schreiber, I.M., Mitch, W.A., 2006. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environmental Science & Technology 40, 6007-6014.
Schreiber, I.M., Mitch, W.A., 2007. Enhanced nitrogenous disinfection byproduct formation near the breakpoint: Implications for nitrification control. Environmental Science & Technology 41, 7039-7046.
Shahbaz, K., Baroutian, S., Mjalli, F., Hashim, M., AlNashef, I., 2012. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta 527, 59-66.
Shahidi, D., Roy, R., Azzouz, A., 2015. Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts. Applied Catalysis B: Environmental 174-175, 277-292.
Sharma, P., Das, M.R., 2013. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. Journal of Chemical & Engineering Data 58, 151-158.
Sharp, J.O., Wood, T.K., Alvarez-Cohen, L., 2005. Aerobic biodegradation of n-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering 89, 608-618.
Sharpless, C.M., Linden, K.G., 2003. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environmental Science & Technology 37, 1933-1940.
Shen, R., Andrews, S.A., 2011a. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research 45, 944-952.
Shen, R., Andrews, S.A., 2011b. NDMA formation kinetics from three pharmaceuticals in four water matrices. Water research 45, 5687-5694.
Shen, R., Andrews, S.A., 2013a. NDMA formation from amine-based pharmaceuticals – Impact from prechlorination and water matrix. Water Research 47, 2446-2457.
Shen, R.Q., Andrews, S.A., 2013b. Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Research 47, 802-810.
Shen, R.Q., Andrews, S.A., 2013c. NDMA formation from amine-based pharmaceuticals - Impact from prechlorination and water matrix. Water Research 47, 2446-2457.
Shenbaga Vinayaga Moorthi, N., Arul Franco, P., Ramesh, K., 2015. Application of design of experiments and artificial neural network in optimization of ultrasonic energy-assisted transesterification of Sardinella longiceps fish oil to biodiesel. Journal of the Chinese Institute of Engineers 38, 731-741.
Sánchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-García, M.A., Bautista-Toledo, I., 2008. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. Water Research 42, 4163-4171.
Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C., Yoon, Y., 2007. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156-181.
Stackelberg, P.E., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Henderson, A.K., Reissman, D.B., 2004. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-watertreatment plant. Science of the Total Environment 329, 99-113.
Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., 2006. Graphene-based composite materials. nature 442, 282.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon 45, 1558-1565.
Steinmetz, K.A., Potter, J.D., 1991. VEGETABLES, FRUIT, AND CANCER .2. MECHANISMS. Cancer Causes & Control 2, 427-442.
Subedi, B., Balakrishna, K., Joshua, D.I., Kannan, K., 2017a. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167, 429-437.
Subedi, B., Balakrishna, K., Joshua, D.I., Kannan, K., 2017b. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167, 429-437.
Sun, Y.B., Yang, S.B., Zhao, G.X., Wang, Q., Wang, X.K., 2013. Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chemistry-an Asian Journal 8, 2755-2761.
Svozil, D., Kvasnicka, V., Pospichal, J., 1997. Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems 39, 43-62.
Tian, Y.-H., Huang, J., Sheng, X., Sumpter, B.G., Yoon, M., Kertesz, M., 2015. Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters 15, 5482-5491.
USEPA, 2002. Integrated Risk Information System (IRIS) Database.
USEPA, 2004. Method 521 Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with large volume injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS). U.S. ENVIRONMENTAL PROTECTION AGENCY.
USEPA, 2008. Drinking water contaminant candidate list 3. U. S. Environmental Protection Agency: Washington, DC.
USEPA, 2010. Emerging Contaminant - N-Nitroso-dimethylamine (NDMA). The U.S. Environmental Protection Agency.
USEPA, 2013. USEPA Integrated Risk Information System (IRIS) Database. U.S. Environmental Protection Agency.
USHHS, 2014. Report on Carcinogens, Thirteenth Edition.
Von Gunten, U., Salhi, E., Schmidt, C.K., Arnold, W.A., 2010. Kinetics and Mechanisms of N-Nitrosodimethylamine Formation upon Ozonation of N,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology 44, 5762-5768.
Wang, C.Y., Wang, W., Xin, G.B., Li, G.L., Zheng, J., Tian, W.H., Li, X.G., 2016a. Phase change behaviors of PEG on modified graphene oxide mediated by surface functional groups. European Polymer Journal 74, 43-50.
Wang, J., Chen, Z.M., Chen, B.L., 2014a. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environmental Science & Technology 48, 4817-4825.
Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L., Wang, X., 2012a. Reduced graphene oxide/ZnO composite: reusable adsorbent for pollutant management. ACS applied materials & interfaces 4, 3084-3090.
Wang, L., Li, Y., Shang, X., Shen, J., 2014b. Occurrence and removal of N-nitrosodimethylamine and its precursors in wastewater treatment plants in and around Shanghai. Frontiers of Environmental Science & Engineering 8, 519-530.
Wang, L., Yang, J., Li, Y., Lv, J., Zou, J., 2016b. Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: Influencing factors and degradation intermediates. Chemical Engineering Journal 284, 1058-1067.
Wang, W., Ren, S., Zhang, H., Yu, J., An, W., Hu, J., Yang, M., 2011a. Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors. Water Research, pp. 4930-4938.
Wang, X., Guocheng, L., Wang, Q., Zhu, Z., Li, Z., Mao, F., Wu, L., 2012b. Adsorption of chlorpheniramine from water by rectorite. Chem Ind Eng Prog 4, 938.
Wang, Y., Shi, Z., Yin, J., 2011b. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. Acs Applied Materials & Interfaces 3, 1127-1133.
Wang, Z., Zhang, X.-H., Huang, Y., Wang, H., 2015. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environmental Pollution 204, 223-232.
Wei, H., Yang, W., Xi, Q., Chen, X., 2012. Preparation of Fe3O4@graphene oxide core–shell magnetic particles for use in protein adsorption. Materials Letters 82, 224-226.
Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental science & technology 39, 6649-6663.
Williams, G., Seger, B., Kamat, P.V., 2008. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2, 1487-1491.
Wu, X.L., Shi, Y.P., Zhong, S.X., Lin, H.J., Chen, J.R., 2016. Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue. Applied Surface Science 378, 80-86.
Wu, Y., Li, Z., Chen, J., Yu, C., Huang, X., Zhao, C., Duan, L., Yang, Y., Lü, W., 2015. Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment. Materials Research Bulletin 68, 234-239.
Xia, C., Lv, G., Mei, L., Song, K., Li, Z., Wang, X., Xing, X., Xu, B., 2014. Removal of chlorpheniramine from water by birnessite. Water, Air, & Soil Pollution 225, 2131.
Xie, J., Li, J., Zhao, L., Zhang, X., Yu, B., Wu, R., Wang, R., Liu, J.-H., Xue, F., Yang, S.-T., 2014. Fabrication of TiO2-graphene oxide aerogel for the adsorption of copper ions. Nanoscience and Nanotechnology Letters 6, 1018-1023.
Xu, J., Wang, L., Zhu, Y., 2012. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 28, 8418-8425.
Yakout, A.A., Shaker, M.A., 2016. Dodecyl sulphate functionalized magnetic graphene oxide nanosorbent for the investigation of fast and efficient removal of aqueous malachite green. Journal of the Taiwan Institute of Chemical Engineers 63, 81-88.
Yang, L., Chen, Z., Shen, J., Xu, Z., Liang, H., Tian, J., Ben, Y., Zhai, X., Shi, W., Li, G., 2009. Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation. Environmental Science & Technology 43, 5481-5487.
Yang, X., Li, J., Wen, T., Ren, X., Huang, Y., Wang, X., 2013a. Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 422, 118-125.
Yang, X., Li, J.X., Wen, T., Ren, X.M., Huang, Y.S., Wang, X.K., 2013b. Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 422, 118-125.
Yang, Y., Ok, Y.S., Kim, K.-H., Kwon, E.E., Tsang, Y.F., 2017. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of The Total Environment 596, 303-320.
Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., Amy, G., 2009. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Research 43, 2349-2362.
Yoon, S., Nakada, N., Tanaka, H., 2011. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. Journal of Hazardous Materials 190, 897-902.
Yoon, S., Nakada, N., Tanaka, H., 2012. A new method for quantifying N-nitrosamines in wastewater samples by gas chromatography-triple quadrupole mass spectrometry. Talanta 97, 256-261.
Yu, B., Bai, Y., Ming, Z., Yang, H., Chen, L., Hu, X., Feng, S., Yang, S.-T., 2017. Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Materials Chemistry and Physics 198, 283-290.
Zemlyanov, D.Y., Savinova, E., Scheybal, A., Doblhofer, K., Schlögl, R., 1998. XPS observation of OH groups incorporated in an Ag(111) electrode. Surface Science 418, 441-456.
Zhang, W., Wang, C., Li, Z., Lu, Z., Li, Y., Yin, J.J., Zhou, Y.T., Gao, X., Fang, Y., Nie, G., 2012. Unraveling Stress‐Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism. Advanced Materials 24, 5391-5397.
Zhang, Y., Tang, Y., Li, S., Yu, S., 2013. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide. Chemical Engineering Journal 222, 94-100.
Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y., Wang, X., 2011. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions 40, 10945-10952.
Zhao, H., Wang, J., Zhang, D., Dai, Q., Han, Q., Du, P., Liu, C., Xie, Y., Zhang, Y., Cao, H., 2017. Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide. Scientific reports 7, 42643.
Zhao, H., Weng, L., Cui, W.-W., Zhang, X.-R., Xu, H.-Y., Liu, L.-Z., 2016. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst.
Zhao, J., Wang, Z., White, J.C., Xing, B., 2014. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology 48, 9995-10009.
Zhou, C., Gao, N.Y., Deng, Y., Chu, W.H., Rong, W.L., Zhou, S.D., 2012. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials 231, 43-48.
Zhou, H., Yue, X., Lv, H., Kong, L., Ji, Z., Shen, X., 2018. Graphene oxide-FePO4 nanocomposite: Synthesis, characterization and photocatalytic properties as a Fenton-like catalyst. Ceramics International 44, 7240-7244.
Zhou, Q., McCraven, S., Garcia, J., Gasca, M., Johnson, T.A., Motzer, W.E., 2009. Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Research 43, 793-805.
Zhu, S., Liu, Y.-g., Liu, S.-b., Zeng, G.-m., Jiang, L.-h., Tan, X.-f., Zhou, L., Zeng, W., Li, T.-t., Yang, C.-p., 2017. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20-28.
Zubir, N.A., Yacou, C., Motuzas, J., Zhang, X., Zhao, X.S., Diniz da Costa, J.C., 2015. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4. Chemical Communications 51, 9291-9293.
Zwiener, C., Frimmel, F., 2000. Oxidative treatment of pharmaceuticals in water. Water Research 34, 1881-1885.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code