Responsive image
博碩士論文 etd-0707103-160103 詳細資訊
Title page for etd-0707103-160103
論文名稱
Title
流體在微渠道流動之數值模擬
Simulation of Gaseous Flow in a Microchannel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-07-07
關鍵字
Keywords
直接蒙地卡羅、熱傳、微渠道
DSMC, microchannel, heat transfer
統計
Statistics
本論文已被瀏覽 5663 次,被下載 4375
The thesis/dissertation has been browsed 5663 times, has been downloaded 4375 times.
中文摘要
本研究採用直接模擬蒙地卡羅法(DSMC)模擬低速氣體通過長度很短的二維平板(L/D=6),選用氮氣、氬氣、氦氣為研究氣體。設定進口氣體的紐森數(Kn)為0.09至0.2。探討改變壁面溫度、進口壓力、模擬流體的不同對於熱傳效果和速度分佈之影響。利用DSMC模擬二維平板的結果計算出其熱傳效果與摩擦係數,並與前人做比較。最後針對模擬結果為過渡流區的流場進行分析,用平均紐賽數 對平均普朗克數( )與平均紐森數( )建立一關係式。
Abstract
A numerical prediction using the Direct Simulation Monte Carlo method (DSMC)has been performed on low speed gas flows through a short parallel plate microchannel(L/Dh=6). Computations were carried out for nitrogen, argon, and helium gas. Micro pressure driven flows are simulated with the inlet value of the Knudsen numbers ranging from 0.09 to 0.2. The effects of varying pressure, wall temperature, inlet flow and gas transport properties on the wall heat transfer, pressure and velocity distribution were examined. Friction factors and heat transfer from the channel were also calculated and compared with those of previous studies. Finally, the averaged Nusselt number was correlated in a simple form of the averaged Peclet number and Knudsen number in the transition flow regime.
目次 Table of Contents
目 錄 頁 次
目錄 i
圖目錄 iii
表目錄 v
符號說明 vi
中文摘要 ix

第一章 緒論 1
1-1 前言 1
1-2 研究背景、動機 2
1-3 文獻回顧 2
1-4 研究重點 4

第二章 理論分析 8
2-1 稀薄氣體的定義 8
2-2 波茲曼方程式 11
2-3 流場性質之定義 13
2-4 N-S方程式配合滑移邊界條件的理論解 15
2-5 流場性質之計算 22

第三章 實驗步驟 25
3-1 直接模擬蒙卡羅法(DSMC) 25
3-2 DSMC之假設與基本流程 26
3-3 DSMC參數設定 28
3-3-1 網格設定 28
3-3-2 時步設定 32
3-3-3 邊界條件 32
3-3-4 碰撞對的選擇 33
3-3-5 VHS分子模型 34
3-3-6 穩態設定 34

第四章 結論與討論 38
4-1 問題描述與模型建立 38
4-2 流體性質 39
4-3 各case的參數與模擬結果 43

第五章 建議 85

參考文獻 86

圖 目 錄 頁次
圖1-1 Kn的範圍及所對應的流體模式 6
圖2-1 Kn與數學式的關係 10
圖2-2 DSMC模擬值與解析解之比較 21
圖3-1 DSMC流程圖 27
圖3-2(a) 矩形網格 29
圖3-2(b) 不規則網格 29
圖3-3 熱場case1、2、3、5、6網格測定 30
圖3-4 熱場case4、7、8網格測定 31
圖3-5 熱場case4速度達穩態之Print cycle 36
圖3-6 熱場case4溫度達穩態之Print cycle 37
圖4-1 流場模型 40
圖4-2 熱場模型 41
圖4-3 不同網格數的壓力模擬結果 46
圖4-4 不同網格數的壓力模擬結果 47
圖4-5 流場模型壓力分佈 49
圖4-6 流場模型Kn分佈 50
圖4-7 流場模型case1速度分佈 51
圖4-8 流場模型case2速度分佈 52
圖4-9 流場模型case3速度分佈 53
圖4-10 流場模型case4速度分佈 54
圖4-11 流場模型立體速度分佈 55
圖4-12 流場模型case1密度分佈 56
圖4-13 流場模型case2密度分佈 57
圖4-14 流場模型case3密度分佈 58
圖4-15 流場模型case4密度分佈 59
圖4-16 流場模型case1、case2馬赫數分佈 60
圖4-17 流場模型case3、case4馬赫數分佈 61
圖4-18 流場模型case1摩擦係數分佈 63
圖4-19 流場模型case2摩擦係數分佈 64
圖4-20 流場模型case3摩擦係數分佈 65
圖4-21 流場模型case4摩擦係數分佈 66
圖4-22(a) 熱場模型case1、2、3、5、6網格分佈 71
圖4-22(b) 熱場模型case4、7、8網格分佈 71
圖4-23(a) case8不同模擬分子之溫度分佈 72
圖4-23(b) case8不同模擬分子之壓力分佈 72
圖4-24 case2中心線溫度分佈與(2.11)式理論解的比較 73
圖4-25 與Farouk熱通量之比較 74
圖4-26 Kn分佈 78
圖4-27 熱通量分佈 79
圖4-28(a) x=0.00048溫度分佈 80
圖4-28(b) x=0.000732溫度分佈 80
圖4-28(c) x=0.000969溫度分佈 81
圖4-28(d) x=0.002397溫度分佈 81
圖4-29 Nu分佈 82
圖4-30 雷諾數分佈 83
圖4-31 與 、 的關係式 84

表 目 錄 頁次
表4-1 氣體性質 42
表4-2 流場模型參數 45
表4-3(a) 熱場模型參數 69
表4-3(b) 熱場模型參數 70
參考文獻 References
參考文獻
1. A. B. Hunang, and P. F. Hwang, “Test of Statistical models for gases with and without internal energy states,” Phys. Fluid, Vol.6, No.466, 1973.

2. A. Beskok, and G. E. Karniadakis, “Rarefaction and Compre- ssibility Effect in Gas Microflows,” Journal of Fluids Engineer- ing, Transactions of the ASME, Vol. 118, No. 3, pp. 448-455, 1996.

3. C. K. Oh, R. S. Sincovits, B. Z. Cybyk, E. S. Oran,and J. P. Boris, Parallelization Grid AIAA Journal, pp.1363-1370,1996

4. C. K. Oh, E. S. Oran, and R. S. Sincovits, “Computations of High-Speed High Knudsen Number Microchannel Flows,” J. of Thermophysics Heat Transfer, Vol. 11, pp. 497-505, 1997.

5. C. Mavriplis, J. C. Ahn, and R. Goulard, ‘‘Heat Transfer and Flowfields in Short Microchannels Using Direct Simulation Monte Carlo,’’ J. of Thermophysics and Heat Transfer, Vol. 11, pp. 489-496, 1997.

6. C. S. Chen, and S. M. Lee, ”Numerical analysis of gas flow in microchannels,” Numerical Heat Transfer, Part A, Vol.33, pp.749-762, 1998.

7. D. C. Raparot, “Molecular Dynamics Study of Rayleigh-Benard Convection,” Phys. Rev. Lett. Vol.60, pp.2480, 1988.

8. E. B. Arkilic, K. S. Breuer, and M. A. Schmidt, “Gaseous Flow in Micro Channels,’’ International Mechanical Engineering Congress and Exposition, Chicago, Illinois, FED. Vol. 197, ASME, pp. 57-66, 1994.

9. E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, “Slipflow in microchannels”. See Harvey&lord , Vol 1, pp. 347-353, 1995.

10. E. S. Piekos, and K. S. Breuer, “Numerical Modeling of Micro- mechanical Devices Using the Direct Simulation Monte Carlo Method,” J. of Fluids Engineering, Vol.118, pp. 464-469, 1996.

11. E. B. Arkilic, M .A. Schmidt and K.S. Breuer,“Gaseous slip flow in long microchannels”. J. Microelectromech. Syst. Vol.6, No.2, pp .167-177,1997.

12. E. B. Arkilic, K. S. Breuer,“Mass flow and tangential momentum accommodation in silicon micromachined channels,” J. Fluid Mech.,Vol.436, pp.29-43, 2001.

13. F. Yan and B. Farouk, “Computations of Low Pressure Flow and Heat Transfer in Ducts Using the Direct Simulation Monte Carlo Method,” J. of Heat Transfer, Vol. 124, pp. 609-616, 2002.

14. G. A. Bird, ‘‘Perception of Numerical Methods in Rarefied Gas Dynamics,’’ in Rarefied Gas Dynamics: Theoretical and Computational Techniques, Vol. 118 of Progress in Aeronautical and Astronautics, AIAA, Washington, D. C.

15. G. A., Bird, Molecular Gas Dynamics, 1976, Oxford Press, New York

16. G. A., Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow, 1994, Oxford University Press, New York, NY.

17. G. A., Bird, “Recent Advance and Current Challenges for DSMC,” Computers Math. Applic.,Vol.35, No.1/2, pp.1-14,1998.

18. G. A., Bird, The DS2G Program User’s Guide Version 3.2 ,1999.

19. H. Xue, Q. Fan, “Compressible Effects in Microchannel Flows,’’ Proceedings of the Electronic Packaging Technology Conference, EPTC, pp. 224-228,1998.

20. H. Sun, and M. Faghri,“Effects of Rarefaction and Compres- sibility of Gaseous Flow in Microchannels Using DSMC,’’ Numerical Heat Transfer, Part A, Vol. 38, pp. 153-168, 2000.

21. H. Xue, Q. Fan, and C. Shu, “Prediction of Micro-channel Flows Using Direct Simulation Monte Carlo,’’ Probabilistic Engineering Mechanics, Vol. 15, pp. 213-219, 2000.

22. J. N. Moss, G. A. Bird, “Direct Simulation of Transitional Flow for Hypersonic Re-entry Condition,” Progr. In Astro. And Aero. Vol.96, pp.133, 1985.

23. J. K. Harvay, “Direct Simulation Monte Carlo Method and Comparison with Experiment,” Progr. In Astro. And Aero. Vol.103, pp.25, 1986.

24. J. Harley , Y. Huang, H. Bau, and J. N. Zemel, “Gas flow in microchannel,” J. Fluid Mech., Vol. 284, pp.257-274, 1995.

25. J. C. Ahn, C. Mavriplis, R .Goulard, “Heat transfer and flow fields in microchannels using the DSMC simulation method,” AIAA Vol.11 No.4 pp.489-496 , 1996.

26. K. Pong, C. Ho, J. Liu, and Y. Tai, “Non-linear pressure distrib- ution in uniform microchannels,” in Appl. Microfabrication to Fluid Mechanics, ASME Winter Annu. Meet., Chicago,IL, pp.51-54 , Nov. 1994.

27. K. C. Kannenberg, I. D. Boyd. “Three-Dimensional Monte Carlo Simulations of Plume Impingement ,”J. of Thermophysics and Heat Transfer, Vol. 13, pp. 226-235, 1999.

28. L. M. Hudson, L. D. Potter,” Gas transport by thermal trans- piration in micro-channels - a numerical study,” American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, Micro-Electro-Mechanical Systems (MEMS), Vol.66, pp. 223-228, 1998.

29. M. Gad-el-Hak , “ The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture,” J. of Fluids Engineering, Vol.121, pp.5-33,1999.

30. M. Ota, T. Nakao, “Effect of Environmental Gas Conditions on Laser Opto-microengine Performance,” Applied Surface Science,Vol.144, pp.480-483,1999.

31. M. A. Gallis, D. J. Rader, and J. R. Torczynski, “Thermophoresis in Rarefied Gas Flow,” Aerosol Science and Technology, Vol. 36, No. 12, pp. 1099-1117, 2002.

32. N. G. Hadjiconstantinou and O. Simek, ‘‘Constant – Wall – Temperature Nusselt number in Micro and Nano-Channels,’’ J. of Heat Transfer, Vol. 124, pp. 356-364, 2002.

33. R. P. Nance, D. B. Hash, H. A. Hassan, “Role of boundary conditions in Monte Carlo simulation of Microelectromechanical Systems”. In J. Thermophys. Heat Transfer. Vol.12 No.3 pp447-449, 1998.

34. R. Carlyn,“Nonlinear filtering for low-velocity gaseous micro- flows,” AIAA Journal, Vol. 40, No.1, pp. 82-90, 2002.

35. S.-S. Hsieh, H.-H. Tsai, C.-Y. Lin, C.-F. Huang, and C.-M. Chien, “Gas Flow in a Long Microchannel,’’ (submitted to Internal journal of heat and mass transfer).

36. S.-S. Hsieh, Y.-T Wang, H.-H. Tsai “DSMC Simulation For Gaseous Slip Flows In A Parallel Plate Microchannel” (submitted to J. of Micro Mechanics and Microengineering).

37. S.-S. Hsieh, Y.-T Wang, H.-H. Tsai “DSMC Simulation for Constant-Wall-TemperatureHeat Transfer in A Short Parallel Plate Microchannel” (submitted to J. of Micro Mechanics and Microengineering).

38. Tecplot 9.0 User’s Manual, Amtec.

39. Y. K. Lee, J. W. Lee,“Direct Simulation of Pumping Charateristic for a Model Diffusion Pump,” Vacuum, Vol. 47, No.3, pp.297-306,1996.

40. Y. Fang, and W. W. Liou, “Heat Transfer in Microchannel Devices Using DSMC ,” J. of Microelectromechanical System, Vol. 10, No.2,pp. 338-345, 2001.

41. Y. Fang, and W. W. Liou “Computations of the Flow and Heat Transfer in Micro Devices Using DSMC with Implicit Boundary Conditions,” J. of Heat Transfer, Vol. 124, pp. 338-345, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code