Responsive image
博碩士論文 etd-0707104-114241 詳細資訊
Title page for etd-0707104-114241
論文名稱
Title
人類乳癌中14-3-3 gamma蛋白過量表現的研究
Overexpression of 14-3-3 gamma protein in human breast carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-06
繳交日期
Date of Submission
2004-07-07
關鍵字
Keywords
乳癌、14-3-3 gamma蛋白
breast cancer, 14-3-3 gamma protein
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
14-3-3蛋白是一種molecular chaperones。它們幫助調控有關細胞繁殖、分化,以及存活的訊息傳遞途徑。它們直接或間接與繁殖訊號傳遞蛋白,如PKC,MEK kinases,PI3-K和Raf有關連。在人類,有七個不同的14-3-3基因:β(beta)、γ(gamma)、ε(epsilon)、η(eta)、σ(sigma)、τ/θ(tau/theta)、ζ(zeta)以及一些可能的假基因,而酵母菌有2個和植物有15個14-3-3基因。雖然有基因歧異性,但是所有14-3-3 isotypes有很多相同且保守之序列。
在現有的研究顯示,在所有14-3-3的家族當中,14-3-3 sigma被認為和癌症的發生有最直接的關係,因為目前它的功能被認為是抑制細胞週期之細胞增生的腫瘤抑制者。而在許多腫瘤的發生中,14-3-3 sigma有很高的比率是不活化的;更重要者,在大多乳癌細胞中14-3-3 sigma不表現。因為14-3-3 sigma藉由在細胞質中,結合上cyclin E-CDK2複合物與cyclin B-CDC2複合物使之不活化並留在細胞質中,所以使細胞週期分別停留在G1與G2。而其餘14-3-3 isotypes在乳癌形成的角色亦無定論。
本實驗的目的是要在人類非腫瘤的乳房組織與乳房腫瘤組織之中,尋找14-3-3 gamma表現量的差異。經由反轉錄聚合酶連鎖反應、蛋白質西方墨漬法分析、免疫組織染色與即時定量聚合酶連鎖反應等實驗初步發現14-3-3 gamma在乳房腫瘤組織中DNA、RNA及蛋白質的層面上有過量表現,至於14-3-3 gamma可能在乳房腫瘤發生中所扮演的角色,則有待後續之研究。
Abstract
The chaperone proteins designated 14-3-3 are expressed in all eukaryotic cells; they help to regulate signal transduction pathways controlling proliferation, differentiation, and survival. They associated directly or indirectly with proliferative signal-transducing proteins such as PKC, MEK kinases, PI3-kinase and Raf. In human, there are seven isotypes of 14-3-3 genes: β(beta)、γ(gamma)、ε(epsilon)、η(eta)、σ(sigma)、τ/θ(tau/theta) andζ(zeta), some of which would be pseudogenes, and yeast and plant each have two and fifteen genes. Althought these genes are diverse, all 14-3-3 isotypes share many conservation domains in amino acid sequences.
The previous studies have suggested that 14-3-3 sigma is most directly linked to cancer because it is thought to function as a tumor suppressor by inhibiting cell-cycle progression. In tumor formation, inactivation of 14-3-3 sigma occurs with high frequency. More importantly, expression of 14-3-3 sigma is silenced in most breast cancer cells. The 14-3-3 sigma protein is associated with cyclin E-CDK2 complex as well as cyclin B-CDC2 complex and mediated their inactivation by cytoplasmic localization and causing cell-cycle arrest in G2 and G1. However, the roles of other 14-3-3 isotypes in the formation of breast cancer are controversial in published reference.
The aim of this study was to determine the differential expressions of 14-3-3 gamma in non-tumor tissues and corresponding tumor tissues. Amplification and overexpression of 14-3-3 gamma in DNA, RNA, and protein of breast tumor tissues were found by experiments of RT-PCR, Western blot analysis, immunohistochemistry and Real-time PCR. However, the role of 14-3-3 gamma in the formation of breast cancer requires further study.
目次 Table of Contents
中文摘要------------------------------------------1
英文摘要------------------------------------------3
緒 論------------------------------------------5
乳癌--------------------------------------------5
近年來乳癌分子生物學的研究----------------------------7
14-3-3 Protein--------------------------------------10
14-3-3 Protein theta/tau subtype---------------------------14
14-3-3 Protein eta subtype------------------------------14
14-3-3 Protein epsilon subtype----------------------------15
14-3-3 Protein beta subtype------------------------------15
14-3-3 Protein zeta subtype------------------------------16
14-3-3 Protein sigma subtype-----------------------------16
14-3-3 Protein gamma subtype----------------------------17
實驗目的-----------------------------------------19
材料與方法---------------------------------------21
檢體與玻片--------------------------------------21
Total RNA萃取------------------------------------21
RT-PCR----------------------------------------22
定序與序列比對-----------------------------------23
Western blot analysis---------------------------------23
免疫組織化學染色----------------------------------25
Genomic DNA的純化--------------------------------26
Real-time quantitative PCR-----------------------------27
實驗結果-----------------------------------------29
RT-PCR檢測臨床乳癌成對檢體間基因表現------------------29
PCR產物定序結果與生物資訊資料庫基因比對----------------29
臨床乳癌成對檢體間蛋白質表現-------------------------29
免疫組織化學染色分析-------------------------------30
乳癌成對檢體基因組DNA 14-3-3 gamma基因之copy number-------30
討 論-----------------------------------------31
參考資料-----------------------------------------36
表格與附圖---------------------------------------43




圖表目錄

圖一:人類14-3-3七種 isotypes的胺基酸序列----------------43
圖二:14-3-3蛋白調節基因表現--------------------------44
圖三:14-3-3蛋白調節細胞週期--------------------------45
圖四:14-3-3蛋白homodimers結構------------------------46
圖五:14-3-3蛋白參與細胞Apoptosis的過程-----------------47
圖六:Real-time quantitative PCR所設計的primer-------------48
圖七:臨床乳癌成對檢體之mRNA表現--------------------49
圖八:自動基因定序結果圖形----------------------------50
圖九:臨床乳癌成對檢體之蛋白質表現---------------------51
圖十:免疫組織染色結果-------------------------------52
圖十一:免疫組織染色結果-----------------------------53
圖十二:Real-time quantitative PCR作腫瘤與非腫瘤乳房組織
Genomic DNA copy number的比較-----------------54
表一:乳癌檢體分類及免疫組織染色之結果-----------------55
表二:14-3-3 gamma表現與病人乳房腫瘤病理關連性----------56
圖十三:Real-time quantitative PCR原理--------------------57
參考文獻 References
Aitken, A., Collinge, D.B., van Heusden, B.P., Isobe T., Roseboom, P.H., Rosenfeld, G. & Soll, J. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 17, 498-501, (1992).

Aitken, A. 14-3-3 and its possible role in coordinating multiple signalling pathways. Trends Cell Biol. 6, 341-347, (1996).

Autieri, M.V., & Carbone, C.J. 14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells.
DNA Cell Biol. 18, 555-564, (1999).

Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779-827, (1987).

Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11-23, (2003).

Braselmann, S. & McCormick, F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 14, 4839-4848, (1995).

Bulavin, D.V., Higashimoto, Y., Demidenko, Z.N., Meek, S., Graves, P., Phillips, C., Zhao, H., Moody, S.A., Appella, E., Piwnica-Worms, H., & Fornace, A.J. Jr. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nature Cell Biol. 5, 545-551, (2003).

Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W., & Vogelstein, B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 7, 616-620, (1999).

Chaudhary, J. & Skinner, M.K. Characterization of a novel transcript of 14-3-3 theta in Sertoli cells. J Androl. 21, 730-738, (2000).

Chen, M. S., Ryan, C. E. & Piwnica-Worms, H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol. Cell. Biol. 23, 7488-7497, (2003).

Chiang, C.W., Kanies, C., Kim, K.W., Fang, W.B., Parkhurst, C., Xie, M., Henry, T., & Yang E. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97, 1289-1297, (2001).

Craparo, A., Freund, R., & Gustafson, T.A. 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner.
J Biol Chem. 272, 11663-11669, (1997).

Dalal, S.N., Yaffe, M.B., & DeCaprio, J.A. 14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle 5, 672-677, (2004).

Dania Alarcon-Vargas & Ze'ev Ronai. p53-Mdm2--the affair that never ends. Carcinogenesis 23, 541-547, (2002).

Dong, Y., Hakimi, M.A., Chen, X., Kumaraswamy, E., Cooch, N.S., Godwin, A.K., & Shiekhattar, R. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087-1099, (2003).

Ferguson, A.T., Evron, E., Umbricht, C.B., Pandita, T.K., Chan, T.A., Hermeking, H., Marks, J.R., Lambers, A.R., Futreal, P.A., Stampfer, M.R., & Sukumar, S. High frequency of hypermethylation at the 14-3-3σ locus leads to gene silencing in breast cancer. Proc. Natl Acad. Sci. USA 97, 6049-6054, (2000).

Ferguson, A.T., Evron, E., Umbricht, C.B., Pandita, T.K., Chan, T.A., Hermeking, H., Marks, J.R., Lambers, A.R., Futreal, P.A., Stampfer, M.R., & Sukumar, S. Hypermethylation of 14-3-3σ (stratifin) is an early event in breast cancer. Oncogene 20, 3348-3353, (2001).

Forrest, A. & Gabrielli, B. Cdc25B activity is regulated by 14-3-3. Oncogene 20, 4393-4401, (2001).

Fountoulakis, M., Cairns, N., & Lubec, G. Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl. 57, 323-335, (1999).

Fu, H., Xia, K., Pallas, D.C., Cui, C., Conroy, K., Narsimhan, R.P., Mamon, H., Collier, R.J., & Roberts, T.M. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266, 126-129, (1994).

Gannon-Murakami, L. & Murakami, K. Selective association of protein kinase C with 14-3-3 zeta in neuronally differentiated PC12 Cells. Stimulatory and inhibitory effect of 14-3-3 zeta in vivo. J Biol Chem. 277, 23116-23122, (2002).

Graves, P. R., Lovly, C. M., Uy, G. L. & Piwnica-Worms. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20, 1839-1851, (2001).

Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., & Vogelstein, B. 14-3-3σ is a p53-regulated inhibitor G2/M progression. Mol. Cell 1, 3-11, (1997).

Hermeking, H. The 14-3-3 Cancer Connection. Nat. Rev. Cancer. 3, 931-943, (2003).

Horie, M., Suzuki, M., Takahashi, E., & Tanigami, A. Cloning, expression, and chromosomal mapping of the human 14-3-3gamma gene (YWHAG) to 7q11.23. Genomics 60, 241-243, (1999).

Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., & Takahashi, Y. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A. 85, 7084-1088, (1988).

Inano, K., Ishida, T., Omata, S., & Horigome, T. In vitro formation of estrogen receptor-heat shock protein 90 complexes. J. Biochem. 112, 535-540, (1992).

Jiang K, Pereira E, Maxfield M, Russell B, Goudelock DM, Sanchez Y. Regulation of Chk1 includes chromatin association and 14-3-3 binding following phosphorylation on Ser345. J. Biol. Chem. 278, 25207-25217, (2003).

Konishi, Y., Lehtinen, M., Donovan, N. & Bonni, A. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol. Cell 9, 1005-1016, (2002).

Lee, J., Kumagai, A. & Dunphy, W. G. Positive regulation Wee1 by Chk1 and 14-3-3 proteins. Mol. Biol. Cell 12, 551-563, (2001).

Leffers, H., Madsen, P., Rasmussen, H.H., Honore, B., Andersen, A.H., Walbum, E., Vandekerckhove, J., & Celis, J.E. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway. J. Mol. Biol. 231, 982-998, (1993).

Li, Y., Inoki, K., Yeung, R., & Guan, K-L. Regulation of TSC2 by 14-3-3 binding. J. Biol. Chem. 277, 44593-44596, (2002).

Liu, M.Y., Cai, S., Espejo, A., Bedford, M.T., & Walker, C.L. 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res. 62, 6475-6480, (2002).

Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172-175, (1999).

Luo, Z. J., Zhang, X. F., Rapp, U., & Avruch, J. Identification of the 14.3.3 domains important for self-association and Raf binding. J. Biol. Chem. 270, 23681- 23687, (1995).

Masters, S.C., Subramanian, R.R., Truong, A., Yang, H., Fujii, K., Zhang, H., & Fu, H.. Survival-promoting functions of 14-3-3 proteins. Biochem. Soc. Trans. 30, 360-365, (2002).

McConnell, J.E., Armstrong, J.F., Hodges, P.E., & Bard, J.B. The mouse 14-3-3 epsilon isoform, a kinase regulator whose expression pattern is modulated in mesenchyme and neuronal differentiation.Dev. Biol. 1, 218-228, (1995).

Meller, N., Liu, Y.C., Collins, T.L., Bonnefoy-Berard, N., Baier, G., Isakov, N., & Altman, A. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function.
Mol. Cell Biol. 10, 5782-5791, (1996).

Michaud, N. R., Fabian, J. R., Mathes, K. D., & Morrison, D. K. 14-3-3 is not activated in a 14-3-3 and Ras-independent manner. Mol. Cell Biol. 15, 3390-3397, (1995).

Moore, B. & Oerez, V.J. Physiological and BiochemicalbAspects of Nervous Integration. Prentice-Hall, Englewood Cliffs, NJ. 343-359, (1967).

Moreira, J.M., Gromov, P., & Celis, J.E. Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Mol. Cell Proteomics 4, 410-419, (2004).

Morrison, D. 14-3-3: modulators of signaling proteins? Science 266, 56-57, (1994).

Motoi, N., Sakamoto, A., Yamochi, T., Horiuchi, H., Motoi, T., & Machinami, R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 1, 1-7, (2000).

Muslin, A. J., Tanner, J. W., Allen, P. M., & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897, (1996).

Nellist, M., Goedbloed, M. A., deWinter, C., Verhaaf, B., Jankie, A., Reuser, A. J. J., van den Ouweland, A. M. W., van der Sluijs, P., & Halley, D. J. J. Identification and characterization of the interaction between tuberin and 14-3-3γ. J. Biol. Chem. 277, 39417-39424, (2002).

Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S., Piwnica-Worms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501-1505, (1997).

Philip L. Grover1 and Francis L. Martin. The initiation of breast and prostate cancer. Carcinogenesis, Vol. 23, No. 7, 1095-1102, July 2002

Powell, D.W., Rane, M.J., Chen, Q., Singh, S., & McLeish, K.R. Identification of 14-3-3ζ as a protein kinase B/Akt substrate. J. Biol. Chem. 277, 21639-21642, (2002).

Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L.C., Smerdon, S.J., Gamblin, S.J., & Yaffe, M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4, 153-166, (1999).

Rosenquist, M., Alsterfjord, M., Larsson, C., & Sommarin, M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 1, 142-149, (2001).

Rosenquist, M. 14-3-3 proteins in apoptosis. Braz. J. Med. Biol. Res. 4, 403-408, (2003).

Rothblum-Oviatt, C. J., Ryan, C. E. & Piwnica-Worms, H. 14-3-3 binding regulates catalytic activity of human Wee1 kinase. Cell Growth Differ. 12, 581-589, (2001).

Shen, Y.H., Godlewski, J., Bronisz, A., Zhu, J., Comb, M.J., Avruch, J., & Tzivion, G. Significance of 14-3-3 self-dimerization phosphorylation-dependent target binding. Mol. Biol. Cell 14, 4721-4733, (2003).

Smith, C.L. Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol. Reprod. 3, 627-632, (1998).

Stavridi, E. S., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. Substitutions that compromise the ionizing radiationinduced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res. 61, 7030-7033, (2001).

Toker, A., Ellis, C.A., Sellers, L.A., & Aitken, A. Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein.
Eur. J. Biochem. 2, 421-429, (1990).

Tommerup, N. & Leffers, H. Assignment of the human genes encoding 14,3-3 Eta (YWHAH) to 22q12, 14-3-3 zeta (YWHAZ) to 2p25.1-p25.2, and 14-3-3 beta (YWHAB) to 20q13.1 by in situ hybridization. Genomics 1, 149-150, (1996).

Tzivion, G., a& Avruch, J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 277, 3061-3064, (2002).

van Hemert, M. J., Steensma, H. Y. & van Heusden, G. P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936-946, (2001).

Vercoutter-Edouart, A.S., Lemoine, J., Le Bourhis, X., Louis, H., Boilly, B., Nurcombe, V., Revillion, F., Peyrat, J.P., & Hondermarck, H. Proteomic analysis reveals that 14-3-3σis down-regulated in human breast cancer cell. Cancer Res. 61, 76-80, (2001).

Wakabayashi, H., Yano, M., Tachikawa, N., Oka, S., Maeda, M., & Kido, H. Increased concentrations of 14-3-3 epsilon, gamma and zeta isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clin Chim Acta. 312, 97-105, (2001).

Wang, W. & Shakes, D. C. Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43, 384-398, (1996).

Watanabe, M., Isobe, T., Ichimura, T., Kuwano, R., Takahashi, Y., Kondo, H., & Inoue, Y. Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain.
Brain Res Mol Brain Res. 25, 113-121, (1994).

Waterman, M. J., Stavridi, E. S., Waterman, J. L., & Halazonetis, T. D. ATM-dependent
activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet. 19, 175-178, (1998).

Won, J., Kim, D.Y., La, M., Kim, D., Meadows, G.G., & Joe, C.O. Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J. Biol. Chem. 21, 19347-19351, (2003).

Xing, H., Zhang, S., Weinheimer, C., Kovacs, A., & Muslin, A.J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 19, 349-358, (2000).

Yaffe, M. B. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53-57, (2002).

Zheng, W.Q., Lu, J., Zheng, J.M., Hu, F.X., & Ni, C.R. Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression. Steroids. 12, 905-910, (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.244.44
論文開放下載的時間是 校外不公開

Your IP address is 3.144.244.44
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code