Responsive image
博碩士論文 etd-0707105-134555 詳細資訊
Title page for etd-0707105-134555
論文名稱
Title
心室中隔缺損相關染色體22q11區域異合子缺失之基因劑量分析
Gene Dosage Analyses on Ventricular Septal Defect (VSD) Related to Loss of Heterozygosity (LOH) on Chromosome 22q11 Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
40
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-27
繳交日期
Date of Submission
2005-07-07
關鍵字
Keywords
心室中隔缺損
congenital heart disease, ventricular septal defect
統計
Statistics
本論文已被瀏覽 5660 次,被下載 8
The thesis/dissertation has been browsed 5660 times, has been downloaded 8 times.
中文摘要
本研究收集來自高雄榮總小兒科92個小兒先天性心臟病 (congenital heart disease, CHD) 家族總計95位病人之血液DNA,其中54位病人 (56.8%) 被診斷為心室中隔缺損 (ventricular septal defect, VSD),所佔比例最高。利用位於第22對染色體上十個涵蓋DiGeorge syndrome 染色體區域 (HSA22q11) 之微衛星型 (microsatellite) 遺傳標記,D22S420、D22S427、D22S1638、D22S941、D22S1648、D22S944、D22S1623、D22S264、D22S303與D22S315,進行台灣小兒先天性心臟病與心臟發育相關基因型的探討。結果顯示,有三十一位心室中隔缺損病人在22q11的位置上有loss of heterozygosity (LOH) 的現象。另外,以生物資訊方法利用Ensembl (EMBL-EBI and the Sanger Institute),Genome browser (UCSU),Map viewer (NCBI),Swiss-Prot database與 FatiGO Data mining with Gene Ontology篩選出位在染色體22q11區域內可能與心臟發育相關的候選基因 TUBA8、CLTCL1、DGCR2、DGCR14、HIRA、TBX1與GNB1L利用定量聚合酵素連鎖反應進行基因劑量之分析。目前結果顯示,微衛星型遺傳標記D22S1648為HSA22q11.2發生LOH頻率較高所在。候選基因TUBA8與HIRA在三十一位心中隔缺損病人中各有48.3%及38.7%單套缺失發生。其中,我們發現有兩位心室中隔缺損與病人在七個候選基因都有單套缺失的情形。此外,在一位房室間管缺損與一位心室中隔缺損病人亦發現在五個候選基因,CLTCL1、DGCR2、DGCR14、HIRA 與 TUBA8有單套缺失。
Abstract
To identify genes related to the heart developments, a total of 92 CHD families from Kaohsiung Veteran General Hospital, including 290 individuals with 95 affected, were genotyped in this study. Among these CHDs families, 54 were diagnosed as VSDs, accounted for 56.8% of all CHDs. Ten highly polymorphic markers, D22S420, D22S427, D22S1638, D22S941, D22S1648, D22S944, D22S1623, D22S264, D22S303 and D22S315, from centromere to the HSA22q telomere, covering HSA22q11 were genotyped by using a semi-quantitative fluorescent PCR. LOH at loci on 22q11 have been identified in 31 VSDs affected individuals. Candidate genes in HSA22q11 region was identified by bioinformatic methods firstly based on Ensembl (EMBL-EBI and the Sanger Institute), Genome browser (UCSU) and Map viewer (NCBI), and then FatiGO Data mining with Gene Ontology and Swiss-Prot annotations. In order to narrow down more specific cardiac development-related candidate genes within HSA22q11, TUBA8, DGCR2, DGCR14, CLTCL1, HIRA, TBX1 and GNB1L, from the centromere to telomere, were further subjected to dosage analyses by quantitative PCR. Results indicated the most frequent LOH region was localized on D22S1648. There are 48.3% and 38.7% of 31 VSDs patients with one copy deletion in TUBA8 and HIRA, respectively. Two VSDs patients were deleted in all seven candidate genes. Furthermore, there are one CAVC and one VSD patient were deleted in five consecutive genes, TUBA8, DGCR2, DGCR14, CLTCL1 and HIRA.
目次 Table of Contents
Chinese abstract -----------------------------------------------------------------Ⅰ
English abstract -----------------------------------------------------------------Ⅱ
Abbreviations --------------------------------------------------------------------Ⅲ
Introduction --------------------------------------------------------- 1
Materials and Methods -------------------------------------------- 3
Results --------------------------------------------------------------- 14
Discussion ----------------------------------------------------------- 23
References ---------------------------------------------------------- 28
參考文獻 References
1. Hoffman JI. Incidence of congenital heart disease. II. Prenatal incidence. Pediatr Cardiol 1995; 16:155–165.
2. Bristow J., The search for genetic mechanisms of congenital heart disease. Cell. Mol. Biol. Res. 1995; 41:307-319.
3. Hoffman, J. and Christianson, R. Congenital heart disease in a cohort of 19,502
births with long-term follow-up. Am. J. Cardiol.1978; 42:641
4. McElhinney DB, McDonald-McGinn D, Zackai EH, Goldmuntz E. Cardiovascular anomalies in patients diagnosed with a chromosome 22q11 deletion beyond 6 months of age. Pediatrics. 2001; 108(6):E104.
5. Lindsay EA. Chromosomal microdeletions: dissecting del22q11 syndrome. Nat Rev Genet. 2001; 2(11):858-68.
6. Formosan Medical Association. The Establishment of Data Bank for Domestic Medicine and Its Application in Health Policy. 1992 Research report.
7. McDonald-McGinn DM, LaRossa D, Goldmuntz E, Sullivan K, Eicher P, Gerdes M, et al. The 22q11.2 deletion: screening, diagnostic workup, and outcome of results; report on 181 patients. Genet Test. 1997; 1(2):99-108.
8. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997; 34(10):798-804.
9. McElhinney DB, Driscoll DA, Levin ER, Jawad AF, Emanuel BS, Goldmuntz E. Chromosome 22q11 deletion in patients with ventricular septal defect: frequency and associated cardiovascular anomalies. Pediatrics. 2003; 112(6 Pt 1):e472.
10. Shi YR, Hsieh KS, Wu JY, Lee CC, Tsai CH, Tsai FJ. Molecular analysis of syndromic congenital heart disease using short tandem repeat markers and semiquantitative polymerase chain reaction method. Pediatr Int. 2002; 44(3):264-8.
11. Shi YR, Hsieh KS, Wu JY, Lee CC, Tsai CH, Yu MT, et al. Genetic analysis of Chromosome 22q11.2 Markers in Congenital Heart Disease. J. Clin. Lab. Analysis 2003; 17:28-35
12. Morrow B, Goldberg R, Carlson C, Das Gupta R, Sirotkin H, Collins J, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet. 1995; 56(6):1391-403.
13. Boulay JL, Reuter J, Ritschard R, Terracciano L, Herrmann R, Rochlitz C. Gene dosage by quantitative real-time PCR. Biotechniques. 1999; 27(2):228-30, 232.
14. Senchenko V, Liu J, Braga E, Mazurenko N, Loginov W, Seryogin Y. Deletion mapping using quantitative real-time PCR identifies two distinct 3p21.3 regions affected in most cervical carcinomas. Oncogene. 2003; 22(19):2984-92.
15. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004; 313(4):856-62.
16. Hoffman JI. Incidence of congenital heart disease: II. Prenatal incidence.
Pediatr Cardiol. 1995; 16(4):155-65. Review.
17. Bonnet D, Cormier-Daire V, Kachaner J, Szezepanski I, Souillard P, Sidi D, et al. Microstallite DNA markers detects 95% of chromosome 22q11 deletions. Am. J. Med. Genet. 1997; 68:182-184
18. Driscoll D.A., Emanuel B.S., Mitchell L.E. PCR assay for screening patients at risk for 22q11.2 deletion. Genet. Test. 1997; 1:109-113.
19. Carlson C, Papolos D, Pandita RK, Faedda GL, Veit S, Goldberg R, et al. Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am. J. Hum. Genet. 1997; 60(4):851-9.
20. Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, Wadey R, et al. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am. J. Hum. Genet. 1997; 61(3):620-9.
21. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, et al. The DNA sequence of human chromosome 22. Nature. 1999; 402, 489-495.
22. Edelmann L, Pandita RK, Spiteri E, Funke B, Goldberg R, Palanisamy N, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet. 1999; 8, 1157-1167.
23. Shaikh, T. H., Kurahashi, H. & Emanuel, B. S. Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet. Med. 2001; 3, 6-13.
24. Halford S, Lindsay E, Nayudu M, Carey AH, Baldini A, Scambler PJ. Low-copy-number repeat sequences flank the DiGeorge/velocardiofacial syndrome loci at 22q11. Hum. Mol. Genet. 1993; 2, 191-196.
25. Edelmann, L., Pandita, R. K. & Morrow, B. E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am. J. Hum. Genet. 1999; 64, 1076-1086.
26. Shaikh TH, Kurahashi H, Saitta SC, O'Hare AM, Hu P, Roe BA, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum. Mol. Genet. 2000; 9, 489-501.
27. Rauch A, Pfeiffer R, Leipold G, Singer H, Tigges M, Hofbeck M. A novel 22q11.2 microdeletion in DiGeorge syndrome. Am J Hum Genet. 1999; 64, 659-666.
28. Amati F, Conti E, Novelli A, Bengala M, Diglio MC, Marino B, et al. Atypical deletions suggest five 22q11.2 critical regions related to the DiGeorge/ velo-cardio-facial syndrome. Eur. J. Hum. Genet. 1999; 7, 903-909.
29. Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T. & Srivastava, D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science. 1999; 283, 1158-1161.
30. S Garcia-Minaur, J Fantes, R S Murray, M S M Porteous, L Strain, J E Burns, et al. A novel atypical 22q11.2 distal deletion in father and son. J. Med. Genet. 2002; 39, e62.
31. Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 1997; 16(18):5687-96.
32. Yang J, Hu D, Xia J, Yang Y, Ying B, Hu J, Zhou X. Three novel TBX5 mutations in Chinese patients with Holt-Oram syndrome. Am J Med Genet. 2000; 92(4):237-40.
33. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001; 28(3):276-80.
34. Ikeda Y, Hiroi Y, Hosoda T, Utsunomiya T, Matsuo S, Ito T, et al. Novel point mutation in the cardiac transcription factor CSX/NKX2.5 associated with congenital heart disease. Circ J. 2002; 66(6):561-3.
35. Monzen K, Zhu W, Kasai H, Hiroi Y, Hosoda T, Akazawa H, et al. Dual effects of the homeobox transcription factor Csx/Nkx2-5 on cardiomyocytes. Biochem Biophys Res Commun. 2002; 298(4):493-500.
36. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424(6947):443-7.
37. Small EM, Krieg PA. Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol. 2003; 261(1):116-31.
38. Brown CO 3rd, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem. 2004; 279(11):10659-69.
39. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. THE LANCET. 2003; Vol 362.
40. Lindsay EA, Baldini A. Congenital heart defects and 22q11 deletions: which genes count? Mol Med Today. 1998; 4(8):350-7. Review.
41. Chapman D.L., Garvey N., Hancock S., et al. Expression of the T-box family genes, Tbx1-bx5, during early mouse development. Dev. Dyn. 1996; 206:379-390.
42. Garg V., Yamagishi C., Hu T., et al. Tbx1, a Digeorge syndrome candidate gene, is regulated by Sonic hedgehog during pharyngeal arch development. Dev. Biol. 2001; 235:62-73.
43. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001; 104: 619-629.
44. Jerome LA & Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBX1. Nature Genetics. 2001; 27: 286-291.
45. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001; 410: 97-101.
46. Francesca Vitelli, Masae Morishima, Ilaria Taddei, Elizabeth A.Lindsay and
Antonio Baldini. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Human Molecular Genetics. 2002; Vol. 11, No.8 915–922.
47. W. Gong, S. Gottlieb, J. Collins, A. Blescia, H. Dietz, E, et al. Goldmuntz. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J. Med. Genet. 2001; 38, e45.
48. E. Conti, N. Grifone, A. Sarkozy, C. Tandoi, B. Marino, M.C. Digilio, et al. DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 gene. Eur. J. Hum. Genet. 2003; 11, 349–351.
49. Marie-AntoinetteVoelckel, Lydie Girardot, Bernard Giusiano, Nicolas Levy, Nicole Philip. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion. Annales de G
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.126.241
論文開放下載的時間是 校外不公開

Your IP address is 18.118.126.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code