Responsive image
博碩士論文 etd-0707105-150303 詳細資訊
Title page for etd-0707105-150303
論文名稱
Title
無鉛錫球封裝晶片之掉落衝擊測試
JEDEC standard board level drop test on lead-free packages
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-22
繳交日期
Date of Submission
2005-07-07
關鍵字
Keywords
封裝、無鉛錫球、裂縫、掉落、壽命、衝擊、失效
impact, package, Lead-free solder joints, life, drop, malfunction, crack
統計
Statistics
本論文已被瀏覽 5800 次,被下載 7947
The thesis/dissertation has been browsed 5800 times, has been downloaded 7947 times.
中文摘要
在電子封裝中,錫球接點是最容易產生缺陷的地方,無鉛材料接點比起含鉛材料接點來的硬且脆,容易在動態負荷下因為吸收衝擊能量的因素而斷裂,造成電子元件的失效,如何提升無鉛接點在動態負荷下的可靠度便成為相當熱門的研究方向。
本研究將根據JEDEC Standard JESD22 - B111 ”Board Level Drop Test Method of Components for Handheld Electronic Products”以及JESD22 – B110 “Subassembly Mechanical Shock” 使用掉落試驗機在1500G的衝擊環境之下作SnAgCu、SnCu以及SnAg合金可靠度測試,並以63Sn37Pb合金作比較;並利用顯微鏡以紅染料實驗進行失效分析,觀察裂縫分佈情形。
由實驗後的結果配合韋伯分析作進一步的平均失效時間MTTF預測時,發現63Sn37Pb錫球之預期壽命為152.52次,而比63Sn37Pb錫球高的材料有Sn0.7Cu、Sn2.6Ag0.5Cu以及Sn3.0Ag0.5Cu錫球,其平均失效時間分別為355.32次、295.82次以及289.54次;尤其是Sn0.7Cu合金,預期壽命是SnPb合金錫球的2.3倍,而三者中平均失效時間最小的Sn3.0Ag0.5Cu合金預期壽命也是SnPb合金的1.89倍,也就是說在同為1500G的衝擊環境下,當錫球材料為Sn0.7Cu、Sn2.6Ag0.5Cu以及Sn3.0Ag0.5Cu時,對於抵抗衝擊的能力皆比當前常用的63Sn37Pb合金強。
經由失效分析後發現錫球裂縫生成位置集中在介金屬化合物IMC(Intermetallic Compound)上,並且也發現封裝體錫球接點的失效位置多集中在外圍角落處,並由外向內分佈,這是因為在掉落過程中封裝體外圍的錫球,尤其是角落區域,因邊界效應而承受較大的應力以及累積較多的應變能所致。
Abstract
Solder joints are the most fragile parts in electronic package. The properties of joints made of lead-free material are harder and crisper than those of lead-contained material. They tend to break due to dynamic loading by absorbing the impact energy and result in malfunction. Thus, how to improve the reliability of contact joints made of lead-free material in dynamic loading has become an important topic for research.

This work is based on JEDEC Standard JESD22 - B111 “Board Level Drop Test Method of Components for Handheld Electronic Products,” and JESD22 – B110 “Subassembly Mechanical Shock”. The setup of drop test apparatuses was used to conduct dropping tests with the impact of acceleration 1500 G, in order to acquire the reliability of SnAgCu, SnCu, and SnAg alloy, which would be compared with 63Sn37Pb. The specimens would be red-dyed for an analysis under SEM to examine the distribution of the breakage.

The results were analyzed by Weibull distribution to predict Mean Time to Failure (MTTF), it is revealed that MTTF of solder joints made of Sn0.7Cu, Sn2.6Ag0.5Cu, and Sn3.0Ag0.5Cu (MTTF=355.32, 295.82, 289.54 cycles respectively) are longer than that made of 63Sn37Pb (MTTF=152.52 cycles). Notably, MTTF of alloy Sn0.7Cu is 2.3 times of solder joints of SnPb. Alloy Sn3.0Ag0.5Cu has the shortest MTTF among the three, which is also 1.89 times of alloy SnPb. That is to say, under impact of 1500G, solder joints made of Sn0.7Cu, Sn2.6Ag0.5Cu, and Sn3.0Ag0.5Cu possess greater resistance to shock than alloy 63Sn37Pb, which is in common by used at present.

In addition, the breakage of solder joints mainly generated on Intermetallic Compound (IMC) and around the four corners, distributed from the periphery to the central area. Especially, those on the corners receive greater stresses due to edge effect.
目次 Table of Contents
目錄
目錄…..…………………………………………………………………I
表目錄………………………………………………………………...IV
圖目錄…………...……………………………………………………..V
中文摘要………...……………………………………………………IX
Abstract………...……………………………………………………...XI
第一章 緒論…….……………………………………………………...1
1-1 研究動機與目的…..……………………………………………1
1-2 文獻回顧...…………..…….…...…………………….…………2
1-3 組織與章節…………………..…………………………………4
第二章BGA封裝技術、衝擊原理及規範介紹………………………..6
2-1 微電子封裝簡介…..……………………………………………6
2-2 球柵陣列封裝簡介………..…….…………..………………….9
2-2-1 BGA的定義……………………………………………….10
2-2-2 BGA之分類……………………………………………….10
2-2-3 BGA的優異性…………………………………………….11
2-3 JEDEC Standard 衝擊規範介紹………………………………12
2-4 可靠度判定………………..…………………………………..14
2-4-1 Weibull分佈簡介…………..……………………………...14
2-4-2 故障種類以及Weibull之物理意義………..…………….18
第三章 實驗工作……………………………………………………..31
3-1 實驗規劃與流程.……..……………………………………….31
3-2 實驗用試片介紹………………………………………………32
3-2-1 實驗晶片介紹…………………………………………….32
3-2-2 實驗測試板介紹………...…….………………………….33
3-3 實驗前置工作…..……….…………………………………….34
3-3-1 表面黏著技術設備介紹………………………………….35
3-3-2 表面黏著技術之作業流程……………………………….36
3-4 掉落衝擊實驗…..……………………………………………..38
3-4-1 掉落衝擊實驗儀器設備介紹…………….………………38
3-4-2 實驗說明………………………………………………….39
3-4-3 實驗條件………………………………………………….41
3-4-4 實驗流程………………………………………………….42
3-5 後續分析作業…………………………………………………43
3-5-1 紅染料分析試驗………………………………………….43
3-5-2 掃描式電子顯微鏡分析………………………………….45
第四章 實驗結果……………………………………………………..65
4-1 掉落循環失效分析……………………………………………65
4-2 紅染料失效模式分析…..……………………………………..66
4-2-1 失效模式定義…………………………………………….66
4-2-2 失效模式分析結果……………………………………….67
4-3 可靠度分析……………………………………………………67
4-4 SEM電子顯微鏡觀察分析……………………………………69
第五章 實驗結果之討論……………………………………………..93
5-1 掉落循環失效結果討論………………………………………93
5-1-1 失效次數討論…………………………………………….93
5-1-2 試片上晶片黏結位置對於可靠度的影響討論………….93
5-2 失效模式分析結果討論………………………………………94
5-3 可靠度分析……………………………………………………94
5-4 SEM電子顯微鏡觀察結果討論………………………………95
第六章 綜合結論與未來展望………………………………………..96
6-1 綜合結論………………………………………………………96
6-2 未來展望及建議事項…………………………………………97
參考文獻………………………………………………………………98















表目錄
表2-1 JEDEC衝擊試驗條件…………………………………………20
表2-2 測試板各層成分………………………………………………20
表2-3 測試板之機械性質……………………………………………21
表2-4 測試板銲墊及Solder Mask Opening規格……………………21
表2-5 測試板幾何尺寸與封裝體搭載位置圖………………………22
表3-1 實驗試片分組及錫球成份規格表……………………………46
表3-2 測試板機械性質一覽…………………………………………46
表3-3 測試板銲墊尺寸表……………………………………………47
表3-4 實驗衝擊條件JEDEC Standard JESD22-B110 Condition B..…………………………………………………………….47
表4-1 晶片初始電阻值………………………………………………70
表4-2 失效次數紀錄 SUF-1 to SUH-1..…………………………….71
表4-3 失效次數紀錄 SUH-2 to SUR-1……...………………..…….72
表4-4 失效次數紀錄 R2…………………………………………….73
表4-5 各成分錫球失效模式統計次數………………………………73
表4-6 各成分錫球失效模式所佔百分比……………………………74
表4-7 韋伯分佈參數表………………………………………………74





圖目錄
圖2-1 封裝目的………………………………………………………23
圖2-2 電子封裝的五個層級封裝技術………………………………24
圖2-3 球柵陣列封裝體………………………………………………25
圖2-4 BGA封裝體內部線路…………………………………………25
圖2-5 Ceramic BGA 截面圖…………………………………………26
圖2-6 Plastic BGA 截面圖…………………………………………...26
圖2-7 Tape BGA 截面圖……………………………………………..27
圖2-8 Metal BGA 截面圖……………………………………………27
圖2-9 JEDEC衝擊試驗機台示意圖…………………………………28
圖2-10 衝擊模具組示意圖…………………………………………..28
圖2-11 Pulse Duration Definition…………………………………… 29
圖2-12 JEDEC規定之晶片編號……………………………………..30
圖3-1 TFBGA 10x10 181L 晶片.............................48
圖3-2 TFBGA 10x10 181L 晶片內部示意圖………………………..48
圖3-3 NiAu 測試版…………………………………………………...49
圖3-4 測試板設計圖…..……………………………………………..49
圖3-5 JEDEC Standard指定晶片位置……………………………….50
圖3-6 SENJU Sn/Ag/Cu 錫膏………………………………………..50
圖3-7 TFBGA 181L定位鋼板………………………………………..51
圖3-8 高溫儲藏箱……………………………………………………51
圖3-9 紅外線回銲爐…………………………………………………52
圖3-10 光學定位儀器………………………………………………..52
圖3-11 X-Ray 單晶繞射儀…………………………………………..52
圖3-12 以膠帶固定印刷電路板……………………………………..53
圖3-13 定位鋼板與銲墊定位………………………………………..53
圖3-14 輔助放大鏡…………………………………………………..54
圖3-15 塗抹錫膏……………………………………………………..54
圖3-16 正確的錫膏量及位置…………………………………….….55
圖3-17 光學定位儀器細部…………………………………………..55
圖3-18 回銲設定溫度………………………………………………..56
圖3-19 錫膏無橋接的現象…………………………………………..56
圖3-20 橋接現象……………………………………………………..57
圖3-21 掉落衝擊機台………………………………………………..57
圖3-22 Event Detector………………………………………………...58
圖3-23 Agilent示波器………………………………………………..58
圖3-24 Kyowa 應變規……………………………………………….59
圖3-25 Kyowa 應變放大器………………………………………….59
圖3-26 衝擊模具組之構造…………………………………………..59
圖3-27 Strike Surface…………………………………………………60
圖3-28 JEDEC Standard Drop Condition B 衝擊條件………………60
圖3-29 將試片面朝下(Face Down)安裝在治具上………………...61
圖3-30 HOZAN K-110切割機……………………………………….61
圖3-31 MTS Sintech 5/G 拉伸試驗機………………………………62
圖3-32 光學顯微鏡……...…………………………………………...62
圖3-33 顯微鏡擷取影像………...…………………………………...63
圖3-34 超音波震盪機……………………..…………………………63
圖3-35 研磨拋光機………...………………………………………...64
圖3-36 掃描式電子顯微鏡…………………………………………..64
圖4-1 Solder Ball 結構示意圖……………………………………….75
圖4-2 Failure Mode定義……………………………………………...75
圖4-3 Failure Mode 1 on Package Side(Mode B1)…………………..76
圖4-4 Failure Mode 1 on Test Board Side(Mode A1)………………..76
圖4-5 Failure Mode 2 on Package Side(Mode B2)…………………..77
圖4-6 Failure Mode 2 on Test Board Side(Mode A2)………………..77
圖4-7 Failure Mode 3 on Package Side(Mode B3)…………………..78
圖4-8 Failure Mode 3 on Test Board Side(Mode A3)………………..78
圖4-9 Failure Mode C on Package Side………………………………79
圖4-10 Failure Mode C on Test Board Side…………………………..79
圖4-11 Sn2.6Ag0.5Cu 錫球Failure Mode…………………………...80
圖4-12 Sn3.0Ag0.5Cu 錫球Failure Mode…………………………...81
圖4-13 Sn4.0Ag0.5Cu 錫球Failure Mode…………………………...82
圖4-14 Sn0.7Cu 錫球Failure Mode………………………………….83
圖4-15 Sn3.5Ag 錫球Failure Mode…………………………………84
圖4-16 63Sn37Pb 錫球Failure Mode………………………………..85
圖4-17 Sn2.6Ag0.5Cu 特徵壽命與韋伯斜率……………………….86
圖4-18 Sn3.0Ag0.5Cu 特徵壽命與韋伯斜率……………………….86
圖4-19 Sn4.0Ag0.5Cu 特徵壽命與韋伯斜率……………………….87
圖4-20 Sn0.7Cu 特徵壽命與韋伯斜率……………………………...87
圖4-21 Sn3.5Ag 特徵壽命與韋伯斜率……………………………...88
圖4-22 63Sn37Pb 特徵壽命與韋伯斜率……………………………88
圖4-23 韋伯斜率物理意義…………………………………………..89
圖4-24 Mode A1:裂縫發生在Test Board 上………………………..89
圖4-25 Mode A2:裂縫發生在IMC上,下圖為局部放大圖………...90
圖4-26 Mode A3:裂縫發生在接近Test Board端,並且橫跨Solder Ball以及 IMC……………………………………………….91
圖4-27 無裂縫之完美錫球…………………………………...……...92
圖4-28 Partial Crack…………………………………………………..92
參考文獻 References
參考文獻
[1] L. Nguyen, R. Walberg, Z. Lin, Y. Koh, YY Bong, MC Chua, S. Chuah, and JJ Yeoh, “ A Structured Approach To Lead-Free IC Assembly Transitioning ”, 2002 SEMI/IEEE IEMT
[2] C. F. Chan, S. K. Lahiri (SMA), P. Yuan (Motorola) and J. B. H. How “ An intermetallic study of solder joints with Sn-Ag-Cu lead-free solder ”, Electronics Packaging Technology Conference (2000).
[3] S-R Tzan and S-L Chu “Characterization of Lead-free Solder by Reliability Testing”, IEEE/CPMT Electronics Manufacturing Technology Symposium (2000).
[4] Kinuko Mishiro, Shingeo Ishikawa, Mitsunori Abe, Toshio Kumai, Yutaka Higashiguchi, and Ken-ichiro Tsubone, “Effect of the drop impact on BGA/CSP package reliability”, Microelectronics Reliability 42 (2002) 77-82.
[5] Desmond Y. R. Chong, Kellin Ng, Jane Y. N. Tan, and Patrick T. H. Low, “Drop Test Reliability Assessment of Leaded & Lead-Free Solder Joints for IC Packages”, Electronics Packaging Technology Conference (2004).
[6] Sambit K. Saha, Sesil Mathew and Sridhar Canumalla, “Effect of Untermetallic Phases on Performance in a Mechanical Drop Environment: 96.5Sn3.5Ag Solder on Cu and Ni/Au Pad Finishes”, Electronic Components and Technology Conference (2004).
[7] Masazumi Amagai, Yoshitaka Toyota, Tsukasa Ohnishi, and Satoru Akita, “High Drop Test Reliability: Lead-free Solders”, Electronic Components and Technology Conference (2004).
[8] F. X. Che and John H.L. Pang, “Harsh Solder Joint Reliability Tests By Impact Drop and Highly Accelerated Life Test (HALT)”, Electronics Packaging Technology Conference (2004).
[9] Minna Arra, DogJi Xie and Dongkai Shangguan, “Performance of Lead-Free Solder Joints Under Dynamic Mechanical Loading”, Electronic Components and Technology Conference (2002).
[10] Chang-Lin Yeh, Yi-Shao Lai, “Transient Analysis of Board-level Drop Response fo Lead-free Chip-Csale Package with Experiment Verifications”, Electronic Components and Technology Conference (2004).
[11] J.-E. Luan, T. Y. Tee, E. Pek, C. T. Lim, Z. Zhong, “Model Analsis and Dynamic Responses of Board Level Drop Test”, Proceeding of EPTC 2003, pp. 233-243, 2003.
[12] Y. C. Ong, V. P. W. Shim, T. C. Chai, C. T. Lim, “Comparison of Mechanical Response of PCBs Subjected to Product-level and Board-level Drop Impact Tests”, Proceeding of EPTC 2003, pp. 223-227, 2003.
[13] T. Y. Hin, K. S. Beh, K. N. Seetharamu, “Development of a Dynamic Test Board for FCBGA Solder Joint Reliability Assessment in Shock & Vibration”, Proceeding of EPTC 2003, pp. 256-262, 2003
[14] 許宏旭,“印刷電路板之低速衝擊研究”,國立成功大學航太工程學研究所碩士論文,2004。
[15] M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, “Impact Reliability of Solder Joints”, Proceeding of ECTC 2004, pp. 668-674, 2004.
[16] Chang-Lin Yeh, Yi-Shao Lai, Pin-Feng Yang, “TransientDeformation and Fracturing of Solder JointsSubjected to Impact Loads”, Proceeding of IMAPS Flip Chip 2004 Workshop, 2004.
[17] “Subassembly Mechanical Shock”, JESD22-B110,JEDEC Solid State Technology Association , March 2001.
[18] “Board Level Drop Test Method of Components for Handheld Elec-ronic Products”, JESD22-B111,JEDEC Solid State Technology Association , July 2003.
[19] http:// www.weibull.com
[20] 劉立晟,”覆晶錫球陣列封裝之無鉛錫球接點可靠度測試”,國立中山大學機械與機電工程研究所碩士論文,2003。
[21] 蔡翰輝,”晶圓級封裝在循環灣曲負載測試下之可靠度分析”, 國立中山大學機械與機電工程研究所碩士論文,2004。
[22] 黃雄年,”覆晶銲料的電子遷移研究”, 國立中山大學機械與機電工程研究所碩士論文,2004。
[23] 陳耀茂,”可靠度工程-方法與應用”,五南圖書出版書局,2001。
[24] 鍾文仁,陳佑任,”IC封裝製程與CAE應用”,金華科技圖書股份有限公司,2004。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code