Responsive image
博碩士論文 etd-0707105-161158 詳細資訊
Title page for etd-0707105-161158
論文名稱
Title
澳洲球形海綿完整粒線體DNA序列及分析研究
Genomic Analyses of the Complete Mitochondrial DNA Sequence of the Sponge, Cinachyrella australiensis (Demospongiae: Spirophorida)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-14
繳交日期
Date of Submission
2005-07-07
關鍵字
Keywords
粒線體DNA、澳洲球形海綿
Cinachyrella australiensis, complete mitochondrial DNA
統計
Statistics
本論文已被瀏覽 5799 次,被下載 1515
The thesis/dissertation has been browsed 5799 times, has been downloaded 1515 times.
中文摘要
海綿動物是多細胞動物當中結構最簡單、形態最原始的一類。其細胞已經分化,但是還沒有形成組織和器官。海綿動物的分布及生存的棲地非常廣泛,多數種類發展出各種特殊的禦敵策略來適應環境。近年來學者們發現海綿含有一些特殊化學產物,有些醫學研究正以其特性發展抗癌藥物。然而我們對於海綿動物的生物學及生物多樣性的瞭解仍然非常缺乏。尤其是在海綿的分類上,依照傳統的型態來分類已到達了瓶頸。因此本研究利用Long PCR以及Primer walking得方式定序出澳洲球形海綿Cinachyrella australiensis的粒線體DNA,除了可供建立海綿的DNA資料庫協助海綿分類,並可以更進一步了解海綿的演化及親緣關係。澳洲球行海綿的粒線體總長為19444個鹼基對,其包含14個蛋白質基因,2 個核醣核酸基因(rRNA),以及24個傳遞者核酸基因(tRNA)。本研究在此海綿上發現一些獨特的特徵,包括在粒線體DNA 細胞色素氧化脢次單元一(COI)之序列中發現有一intron的序列,及一種存在於植物、真菌及原生生物粒線體或動物細胞核中的蛋白質基因ATP9,在本研究中被發現存在於海綿粒線體中,及在海綿粒線體上的tRNA二級結構非常相似於細菌的結構,而異於一般無脊椎動物的結構。由以上證據顯示,後生動物的粒線體DNA 的分子量大小是與演化成反比。
Abstract
Sponges (Porifera) are the most primitive multicellular animals that are highly diverse and complex associated with other organisms, microbes especially. Recently, sponges have received a lot of attention as they are a rich source of nature products with antiviral, antitumor, and antimicrobial activities. Sponges play such important roles in so many marine habitats but little is known about their diversity, biology and ecology as compared with most other animal groups. Moreover, due to limited information provided based on morphology, other method of classification is need. Mitochondrial DNA sequence may fulfill such purpose. The complete nucleotide sequence (19444 bp) of the mt genome of the Cinachyrella australiensis (Demospongiae: Spirophorida) was determined. The genome contains the two rRNA, 24 tRNA and 14 protein-coding genes. We found that poriferan mtDNAs resemble those of other animals in their compact organization, and a well-conserved animal-like gene order. However, this molecule has several unique features: the ATP 9 gene is the first found to be present in the mt genome of multicellular animals, the cytochrome c oxidase subunit I (COI) gene include a group I intron, and encode bacteria-like tRNA. The results represent that the evolution of metazoan mtDNA has been a multistep process to the reduction of tRNA and the introduction of multiple changes of the translation code.
目次 Table of Contents
Contents


Introduction………………………...……………..1
Materials and Methods……………………………8
Results…………………………………………...15
Discussion……………………………………….26
Reference………………………………………..32
Tables……………………………………………42
Figures…………………………………………..47
Supplementary…………………………………..77
參考文獻 References
Reference
Asakawa, S., H. Himeno, K. Miura, and K. Watanabe. (1995) Nucleotide sequence and gene organization of the starfish Asterina pectinifera mitochondrial genome. Genetics. 140:1047-1060.
Beagley, C. T., J. L. Macfarlane, G. A. Pont-Kingdon, R. Okimoto, and N. A. Okada. (1995) Mitochondrial genomes of Anthozoa (Cnidaria), pp. 149-153 in Progress in Cell Research: Symposium on Thirty Years of Progress in Mitochondrial Bioenergetics and Molecular Biology, edited by F. Palmieri, S. Papa, C. Saccone and N. Gadaleta. Elsevier Science BV, Amsterdam, The Netherlands.
Beagley, C. T., N. A. Okada, and D. R. Wolstenholme. (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc. Natl. Acad. Sci. USA 93:5619-5623.
Beagley, C. T., Okimoto, and R., D. R. Wolstenholme. (1998) The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics. 148:1091-1108.
Bergquist, P. R. (1978) Sponges. Hutchinson and Company, London. pp. 268.
Bergquist, P.R. (1985) Porifera relationships, pp. 14-28 in The Origins and Relationships of Lower Invertebrates, edited by S. Conway Morris, J. D. George, R. Gibson, and H. M. Platt. Clarendon, Oxford.
Bon E., S. Casaregola, G. Blandin, B. Llorente, C. Neuveglise, M. Munsterkotter, U. Guldener, H.W. Mewes, J. Van Helden, B. Dujon, and C. Gaillardin. (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns, Nucleic Acids Res. 31: 1121-1135.
Bridge, D., C. W. Cunningham, B. Schierwater, R. DeSalle, and L. W. Buss. (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc. Natl. Acad. Sci. USA 89:8750-8753.
Burger, G., L. Forget, Y. Zhu, M.W. Gray, and B.F. Lang. (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc. Natl. Acad. Sci. USA 100:892-897.
Castresana J, G. Feldmaier-Fuchs, and S. Paabo. (1998) Codon reassignment and amino acid composition in hemichordate mitochondria. Proc. Natl. Acad. Sci. USA 95:3703-3707.
Castro, P. and M. E. Huber (2000) Marine Biology, 3rd ed. McGraw-Hill,Boston. pp. 444.
Cech, T. R. (1988) Conserved sequences and structures of group-I introns:building an active site for RNA catalysis -a review. Gene. 73:259-271.
Cech, T. R. (1990) Self-splicing of group-I introns. Annu. Rev. Biochem. 59:543-568.
Christen, R., A. Ratto, A. Baroin, R. Perasso, K. G. Grell, and A. Adouette. (1991) An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early divergence of triploblasts. EMBO J. 10:499–503.
Crease, T. J. (1999) The complete sequence sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene. 233:89-99.
De Vos, L., K. Rutzler, N. Boury-Esnault, C. Donadey, and J. Vacelet. (1991) Atlas of Sponge Morphology. Smithsonian Institution Press, Washington, DC. pp. 55.
Deutsch, M., and M. Long. (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 27:3219–3228.
Dreyer, H., and G. Steiner. (2004) The complete sequence and gene organization of the mitochondrial genome of the gadilid scaphopod Siphonondentalium lobatum (Mollusca). Mol. Phyl. Evol. 31:605-617.
Garey, J. R., and D.R. Wolstenholme. (1989) Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNA that contains a dihydrouridine-arm replacement loop, and of serine-specifying AGA and AGG codons. J. Mol. Evol. 28:374-387.
Genthe, H. (1998) The Incredible Sponge. Smithsonian. 29:50-58.
Hentschel U, J. Hopke, M. Horn, A. B. Friedrich, M. Wagner, J. Hacker, and B. S. Moore. (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68:4431–4440.
Hickman C.P. (1973) Biology of the invertebrates, 2nd ed. Mosby, St Louis. pp. 757.
Hoffmann, R. J., J. L. Boore, and W. M. Brown. (1992) A novel mitochondrial genome organization for the blue mussell, Mytilus edulis. Genetics. 131:397-412.
Hooper, J. N. A. and, R. W. M. van Soest. (2002) Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum, Amsterdam. pp. 1810.
Hu, M., R. B. Gasser, Y. G. Abs El-Osta, and N. B. Chilton. (2003) Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. Parasitology. 127:37-51.
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
Kobayashi, M., H. Wada, and N. Satoh. (1996) Early evolution of the Metazoa and phylogenetic status of diploblasts as inferred from amino-acid sequence of elongation factor-1a. Mol. Phyl. Evol. 5: 414-422.
Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. (2001) MEGA 2. Version 2.0. Molecular Evolutionary Genetics Analysis software.
Lang, B. F., M.W. Gray, and G. Burger. (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33: 351-397.
Lavrov, D. V., and B. F. Lang. (2005) Transfer RNA gene recruitment in mitochondrial DNA. Trends Genet. 21:129-133.
Lavrov, D. V., L. Forget, M. Kelly, and B. F. Lang. (2005) Mitochondrial Genomes of Two Demosponges Provide Insights into An Early Stage of Animal Evolution. Mol. Biol. Evol. 22: 1231-1239.
Lin, L. Y., I. P. Chen, C. S. Tzeng, and P. C. Huang. (1991) Maternal transmission of mitochondrial DNA in duck. Biochem. Biophys. Res. Commun. 168:188-193.
Lowe, T. M., and S. R. Eddy. (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955-964.
Machida, R. J., M.U. Miya, M. Nishida., and S. Nishida. (2002) Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Mar. Biotech. 4:406-417.
Marck, C., and H. Grosjean. (2003) Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. RNA. 9:1516 - 1531.
Michel, F., and E. Westhof. (1990) Modelling of the three-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216:585-610.
Morris, R.H., D. Abbot, and E. Haderlie. (1980) Intertidal Invertebrates in California. Stanford University Press. Stanford. pp. 690.
Muramatsu, T., K. Nishikawa, F. Nemoto, Y. Kuchino, S. Nishimura, T. Miyazawa, and S. Yokoyama. (1988) Codon and amino acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature. 336:179-181.
Nakao, M., N. Yokoyama, Y. Fukunaga, A. Ito. (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion. 1:497-509.
Ojala, D., C. Merkel, R. Gelfand, and G. Attardi. (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell. 22:393-403.
Ojala, D., J. Montoya, G. Attardi. (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature. 290:470-474.
Okimoto, R., H. M. Chamberlin, J. L. Macfarlane, and D. R. Wolstenholm. (1991) Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification. Nucleic Acids Res. 19:1619-1626.
Okimoto, R., J. L. Macfarlane, D. O. Clay, and D. R. Wolstenholm (1992) The mitochondrial genomes of two nematodes Caenorhabditis elegans and Ascaris suum. Genetics. 130:471-498.
Pont-Kingdon, G., N. A. Okada, J. L. Macfarlane, C. T. Beagley, C. D. Watkins-Sims, T. Cavalier-Smith, G. D. Clark-Walker, and D .R. Wolstenholme. (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial mutS: a possible case of gene transfer from the nucleus to the mitochondrion. J. Mol. Evol. 46:419-431.
Pont-Kingdon, G., N. A. Okada, J. L. Macfarlane, C. T. Beagley, D. R. Wolstenholme, T. Cavalier-Smith and, G. D. Clark-Walker. (1995) A coral mitochondrial mutS gene. Nature. 375:109-111.
Ruppert, E. E., and R. D. Barnes. (1994) Invertebrate Zoology. Saunders College Publishing. Philadelphia. pp. 1056.
Saitou N, and M. Nei. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
Simpson, T. L. (1984) The cell biology of sponges. Springer-Verlag, New York, pp. 114–123.
Soma, A., Y. Ikeuchi, S. Kanemasa, K. Kobayashi, N. Ogasawara, T. Ote, J. Kato, K. Watanabe, Y. Sekine, and T. Suzuki. (2003) An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell. 12:689-698.
Takano, H., T. Abe, R. Sakurai, Y. Moriyama, Y. Miyazawa, H. Nosaki, S. Kawano, N. Sasaki, T. Kuroiwa. (2001) The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol. Gen. Genet. 264:539-545.
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876 -4882.
Tomita, K., T. Ueda, S. Ishiwa, P. F. Crain, J. A. McCloskey, and K. Watanabe (1999) Codon reading patterns in Drosophila melanogaster mitochondria based on their tRNA sequences: a unique wobble rule in animal mitochondria. Nucleic Acids Res. 27:4291-4297.
Valverde, J. R., B. Batuecas, C. Moratilla, R. Marco, and R. Garesse. (1994) The complete mitochondrial DNA sequence of the crustacean Artemia franciscana. J. Mol. Evol. 39:400–408.
van Oppen, M. J. H., B. L. Willis, T. van Rheede, and D. J. Miller. (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol. Ecol. 11:1363-1376.
van Soest, R. W. M., T. M. G. van Kempen, and J. C. Braekman. (1994) Sponges in Time and Space. Balkema Press, Rotterdam.
Wallace, R.L., and W.K. Taylor (2002) Invertebrate Zoology. A Laboratory Manual, 6th ed., Prentice Hall, N.J.
Watkins, R. F., and A. T. Beckenbach. (1999) Partial sequence of a sponge mitochondrial genome reveals sequence similarity to Cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J. Mol. Evol. 48:542–554.
Weber, F., A. Dietrich, J. H. Weil, and L. Marechal-Drouard. (1990) A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res. 18:5027–5030.
Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage, and M. Stroneking. (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Society. 26:375-400.
Wolstenholme, D. R. (1992) Animal mitochondrial DNA structure and evolution. Int. Rev. Cytol. 141:173–216.
Wolstenholme, D. R., J. L. Macfarlane, R. Okimoto, D. O. Clary, and J. A. Wahleithner. (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc. Natl. Acad. Sci. USA 84:1324-1328.
Wood, R. (1990) Reef-building sponges. Am. Sci. 78:224-235.
Yamauchi, M.,M. Miya, and M. Nishida. (2002) Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene. 295:89-96.
陳勇輝,(1988)。澳洲球形海綿芽體與成體型態之研究。國立中山大學海洋生物研究所。碩士論文。
朱育民,(2001)。台灣產瓢鰭蝦虎屬之型態分類學mtDNA 分子演化及日本瓢鰭蝦虎屬生殖生態之研究。國立中山大學海洋資源研究所。碩士論文。
盧德康,(2003)。澳洲球形海綿自營性硫氧化共生細菌之螢光原位雜化。國立中山大學海洋資源研究所。碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code