Responsive image
博碩士論文 etd-0707106-143423 詳細資訊
Title page for etd-0707106-143423
論文名稱
Title
鎳電極與鈦酸鋇介電材料界面微結構分析
A microstructure analysis of the interface between BaTiO3 dielectric and Ni electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-27
繳交日期
Date of Submission
2006-07-07
關鍵字
Keywords
晶向關係、界面、氧化鎳、鈦酸鋇
orientation relationship, interface, NiO, BaTiO3
統計
Statistics
本論文已被瀏覽 5646 次,被下載 24
The thesis/dissertation has been browsed 5646 times, has been downloaded 24 times.
中文摘要
樣品製作有別於一般多層陶瓷電容器的製作,以模擬電容器製作樣品,採取的是粉末乾壓法,再以人工方式塗上鎳漿製作成一夾心狀樣品,在YAGEO公司之實驗室燒結試片。藉由X光、掃瞄式及穿透式電子顯微鏡進行分析,研究的方向在於鈦酸鋇-鎳之界面,及鈦酸鋇-氧化鎳之界面分析。

鈦酸鋇-鎳之界面經TEM-選區繞射圖分析,決定出兩者沒有晶向關係,及利用two-beam images觀察界面,界面並無差排存在。

鈦酸鋇-氧化鎳之界面經XRD及TEM分析決定氧化鎳確實存在,是由於Ni/NiO熱力學的勢能控制造成的。且經two-beam images觀察兩者界面存在一差排列,其Burgers vector為1/2[ 10],更進一步的利用高解析原子影像及傅利葉轉換決定出另兩組Burgers vectors為1/2[00 ]、[ 1 ]。這些差排的產生是由於晶格的不銜接所造成。
Abstract
The BaTiO3 sample was made by dry pressure, it was artificial spread nickel paste on BaTiO3, and it was simulated multilayer ceramic capacitors (MLCC’s) to make a sandwich structure with BaTiO3-Ni-BaTiO3 by sintered in YAGEO’s laboratories. The samples have been thoroughly analysis for the interface between BaTiO3 dielectric and Ni electrode or NiO oxide, by X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy.

The interface between BaTiO3 and Ni has not orientation relationship as determined by selected area diffraction and it’s not had dislocations in interface by two- beam image.

The NiO oxide as determined by XRD and TEM, because of the thermodynamic potential of the Ni/NiO equilibrium was produced. The array of dislocations of Burgers vector is 1/2[ 10] in the interface, and Burgers vectors are 1/2[00 ], [ 1 ] as determined by high resolution images and Fast Fourier Transform simulation. Misfit dislocations along the interface occur to accommodate the lattice mismatch.
目次 Table of Contents
第一章 簡介............................1
1.1 緒論 ..............................1
第二章 文獻回顧........................3
2.1 鈦酸鋇結構.........................3
2.2 相圖...............................7
2.3 氧化鎳結構........................10
2.4 積層陶瓷電容器介紹................12
2.5 低氧氛壓對積層陶瓷電容器之影響....................................14
2.6 金屬薄膜的特性....................18
2.7 晶界(grain boundary)..............20
第3章 實驗步驟........................24
3.1 試片製作..........................24
3.2 實驗藥品..........................25
3.3 密度測量..........................27
3.4 X–ray繞射分析....................29
3.5 掃瞄式電子顯微鏡(SEM).............30
3.6 穿透式電子顯微鏡(TEM).............31
第四章 實驗結果.......................32
4.1 鈦酸鋇粉體及鎳粉繞射分析..........32
4.2 燒結體X-ray繞射分析...............34
4.3 晶格常數量測......................36
4.4 密度量測..........................40
4.5 表面型態觀察......................42
4.6 SEM之定性分析.....................44
4.7 SEM之線分析(Linear scan)..........48
4.8 SEM之面分析(Mapping)..............50
4.9 鈦酸鋇與鎳之晶向關係..............51
4.10鈦酸鋇與氧化鎳之晶向關係..........57
4.11鈦酸鋇與氧化鎳之界面形式與差排之關係....................................62
4.12高解析原子影像及FFT simulation分析界面....................................69
第五章 討論...........................76
5.1 試片製作..........................76
5.2 X-ray繞射分析.....................77
5.3 SEM表面形態觀察...................78
5.4 TEM-鈦酸鋇與鎳之界面觀察..........79
5.5在TEM下決定第二相氧化鎳............80
5.6 TEM-鈦酸鋇與氧化鎳之界面差排觀察....................................83
第六章 結論...........................85
第七章 參考文獻.......................87
第八章 附錄...........................93
8.1 JCPDS 卡號號碼...................93
8.2 立方相之立體投影圖................96
8.3 鈦酸鋇之模擬與實際繞射圖..........97
8.4. JEOL 3010AEM校正.................100
參考文獻 References
1. G. Arlt, D. Hennings, and G. D. With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys. 58 [3] 1619-1625 (1985)
2. H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42 [1] 1-15 (2003)
3. M. R. Opitz, K. Albertsen, J. J. Beeson, D. F. Hennings, J. L. Routbort, and C. A. Randall, “Kinetic Process of Reoxidation of Base Metal Technology BaTiO3-Base Multilayer Capacitors,” J. Am. Ceram. Soc., 86 [11] 1879-7884 (2003)
4. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Dielectric Properties,” pp.913-974 in Introduction to Ceramics, 2nd ED., J. Wiley, N. Y., 1976.
5. B. Jaffee, W. R. Cook, and H. Jaffee, Peizoelectirc Ceramics, Academic Press, N. Y,1971
6. A. J. Moulson, and J. M. Herbert, “Electroceramics,” Chapman and Hall, 1990.
7. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst., A32 751 (1976)
8. D. E. Rase, and R. Roy, “Phase Equilibria in the System BaO-TiO2,” J. Am. Ceram. Soc., 38 [3] 102-113 (1995)
9. K. W. Kirby, and B. A. Wechsler, “Phase Relations in the Barium Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74 [8] 1842-1847 (1991)
10. Y. M. Chiang, D. P. Birnie, and W. D. Kingery, “FCC-Based Structures,” pp. 23-24 in Physical Ceramics, 1st ED., J. Wiley, U.S., 1997.
11. Electrical Industry Alliance (EIA), World Capacitor Trade Statistics (WCTS) (2002).
12. D. H. Yoon, and B. I. Lee, “BaTiO3 Properties and Powder Characteristics for Ceramic Capacitors,” J. Ceram. Proc. Res., 3 [2] 41-47 (2002)
13. Y. Taho, and V. O. Ronald, “Robust Design for a Multilayer Ceramic Capacitor Screen-Printing Process Case Study,” J. Eng. Design, 15 447-457 (2004)
14. L. P. Jonathan, and K. R. Erik, “Highly Accelerated Lifetesting of Base-Metal-Electrode Ceramic Chip Capacitors,” Microelectronics Reliability 42 815–820 (2002)
15. W. Heywang, “Semiconducting Barium Titanate,” J. Mater. Sci., 6 1212-1226 (1971)
16. P. Palanisamy, and D. H. R. Sarma, “Thermodynamics of Processing Copper Thick Film System in a Reactive Atmosphere,” Hybrid Circuits, 13 13019 (1987)
17. C. J. Peng, and H. Y. Lu, “Compensation Effect in Semiconducting Barium Titanate,” J. Am. Ceram. Soc., 71 [1] C-44-C-46 (1988)
18. E. Na, S. C. Churl, and U. Paik, “Temperature Dependence of Dielectric Properties of Rare-Earth Element Doped BaTiO3,” J. Ceram. Proc. Res., 4 [4] 181-184 (2003)
19. D. F. K. Hennings, and H. Scherinemacher, ”Ca-acceptors in Dielectric Ceramics Sintered in Reductive Atmospheres,” J. Eur. Ceram. Soc., 15 795-800 (1995)
20. H. M. Chan, M. P. Harmer, and D. M. Smyth, “Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 69 [6] 507-510 (1986)
21. M. Drofenik, “Oxygen Partial Pressure nd Grain Growth in Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 70 [5] 311-314 (1987)
22. S. F. Wang, F. P. Dougherty, W. Huebner, and J. G. Pepin, ”Silver-Palladium Thick Film Conductors,” J. Am. Ceram. Soc., 77 [12] 3051-3072 (1994)
23. A. P. Sutton, and R. W. Balluffi, “Dislocation Models for Interfaces,” pp70-74 in Interfaces in Crystalline Materials, Oxford, N. Y., 1995.
24. S. P. Sutton, and R. W. Balluffi, “Dislocation Models for Iinterfaces,” pp.70-74 in Interfaces in Crystalline Materials 1stED., Oxford , N.Y., 1995.
25. D. A. Porter, and K. E. Easterling, “Interphase Interfaces in Solids,” pp. 142-149 in Phase Transformations in Metals and Alloys, 2nd ED., Crc Press, U. K. 2001
26. W. T. Read, Dislocations in Crystals, McGraw, N. Y., 1953
27. J. S. Lee, and H. Y. Lu, “A Microstructure Analysis for the Y5V-1206 Capacitors Base on BaTiO3 Ceramics,” MS Thesis, National Sun Yat-Sen University, Taiwan, 2004
28. T. Wagner, A. D. Polli, G, Richter, and H. Stanzick, “Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity,” Z. Metallkd. 92 [7] 701-706 (2001)
29. K. E. Stitzer, J. Darriet, and H. C. zur Loye, “Advances in the Synthesis and Structural Description of 2H-Hexagonal Perovskite-Related Oxides,” Current Opinion in Solid State and Materials Science 5 535-544 (2001)
30. C. L. Jia, M. Siegert, and K. Urban, “The Structure of the Interface Between BaTiO3 Thin Films and MgO Substrates,” Acta Mater., 49 2783-2789 (2001)
31. C. M. Wang, S. Thevuthasan, and C. H. F. Peden, “Interface Structure of an Epitaxial Cubic Ceria Film on Cubic Zirconia,” J. Am. Ceram. Soc., 86 [2] 363-365 (2003)
32. J. P. Poirier, S. Beauchesne, and F. Guyot, “Deformation Mechanisms of Crystal with Perovskite Structure,” pp. 119-123 in A structure of Great Interest to Geophysics and Materials Science, Edited by A. Navrotsky and D. J. Weidner. AM. Geophys Union, Washington, DC, (1989)
33. J. P. Poirier, J. Peyronneau, J. Y. Gesland, G. Brebec, “Viscosity, and Conductivity of the Lower Mantle; an Experimental Study on a MgSiO3 Perovskite Analogue, KZnF3,” Phys. Earth Planet. Interiors, 32 [3/4] 273-287 (1983)
34. N. Doukhan, and J. C. Doukhan, “Dislocations in Perovskite BaTiO3 and CaTiO3,” Phys. Chem. Miner., 13 403-410 (1986)
35. J. Nishigaki, K. Kuroda, and H. Saka, “Electron Microscopy of Dislocation Structures in SrTiO3 Deformed at High Temperatures,” Phys. Status Solidi (A), 128 319-336 (1991)
36. Z. Mao and K. M. Knowles, “Dissociation of Lattice Dislocations in SrTiO3,” Philos. Mag., A 73 (3) 699-708 (1996)
37. Y. Wang, J. P. Poirier and R. C. Liebermann, “Dislocation Dissociation in CaGeO3 Perovskite,” Phys. Chem. Miner., 16 630-633 (1989)
38. M. H. Lin, and H. Y. Lu, “Collinear Partial Dislocations in Barium Titanate Perovskite,” Mater. Sci. Eng.,A333 [1/2] 41-44 (2002)
39. M. H. Lin, and H. Y. Lu, “Dislocation Substructure in CO2-Laser-Sintered Barium Titanate,” Phys. Status Solidi (A),191 [1] 58-66 (2002)
40. S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Dissociation of the 〈001〉Dislocations and Their Interactions with Dislocation Loops in Tetragonal BaTiO3,” J. Am. Ceram. Soc., 89 [5] 1659-1667 (2006)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.218.62
論文開放下載的時間是 校外不公開

Your IP address is 3.16.218.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code