Responsive image
博碩士論文 etd-0707106-151857 詳細資訊
Title page for etd-0707106-151857
論文名稱
Title
八位元20-MS/s管線式類比數位轉換器與應用於ZigBee接收機之低功率五位元2.4-MS/s連續逼近式類比數位轉換器
A 8-bit 20-MS/s Pipeline ADC and A Low-Power 5-bit 2.4-MS/s Successive Approximation ADC for ZigBee Receivers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-20
繳交日期
Date of Submission
2006-07-07
關鍵字
Keywords
管線式、連續逼近式、類比數位轉換器
pipeline, ADC, successive approximation
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
在本論文的第一部份我們提出了一個八位元,20-MS/s取樣頻率的管線式類比數位轉換器。我們使用了一種sharing amplifiers的技術以減少放大器的數量,並且使用動態比較器來降低功率消耗。我們所提出的設計在0.35μm CMOS製程下實現。模擬結果顯示在3.3伏特的供應電壓下,最大的功率消耗為45 mW,且輸入為5 MHz的正弦波得到45 dB的SFDR。
論文第二部分中我們描述了一個應用於868/915 MHz頻帶之ZigBee接收機中五位元,2.4 MHz取樣頻率的低功率類比數位轉換器。此轉換器採用的是連續逼近式的架構。使用0.18 μm CMOS製程下,模擬結果顯示最差的功率消耗僅449.6 μW。此轉換器達成最大的差異非線性度為0.3 LSB,最大的累積非線性度為0.5 LSB。
Abstract
The first topic of this thesis proposes an 8-bit, 20 MSample/s pipeline analog-to-digital converter (ADC). The sharing amplifiers technique is employed to reduce the overall number of the amplifiers wherein dynamic comparators are adopted to reduce the power consumption. The proposed design is implemented by 0.35 μm CMOS technology. The simulation results show that maximum power consumption is 45 mW given a 3.3 V power supply, and the SFDR is 45 dB with a sinusoidal input at 5 MHz.
The second topic is to describe a 5-bit, 2.4 MSample/s, low power analog-to-digital converter for ZigBee receiver using 868/915 MHz band. The converter uses the successive approximation architecture. By using 0.18 μm CMOS technology, the simulation results show the worst-case power consumption is merely 449.6 μW. The converter achieves the maximum differential nonlinearity of 0.3 LSB, the maximum integral nonlinearity of 0.5 LSB.
目次 Table of Contents
目錄
摘要 i
Abstract ii
第一章 簡介 1
1.1 前言 1
1.2 文獻探討 3
1.2.1 八位元20-MS/s管線式類比數位轉換器 3
1.2.2 應用於ZigBee接收機之低功率五位元2.4-MS/s
連續逼近式類比數位轉換器 3
1.3 論文大綱 5
第二章 八位元20-MS/s管線式類比數位轉換器 6
2.1 簡介 6
2.2 電路架構與原理說明 7
2.2.1 S/H電路 8
2.2.2 1.5-bit ADC stage電路 8
2.2.3 sharing amplifiers電路 11
2.2.4 dynamic comparator電路 14
2.2.5 錯誤更正電路 15
2.2.6 不重疊時脈電路 16
2.2.7 穩壓電路 16
2.2.8 操作放大器規格考量 18
2.2.9 timing分析 19
2.3 模擬結果 20
2.3.1 輸出波形 20
2.3.2 DNL/INL 21
2.3.3 SFDR 22
2.3.4 規格列表 23
2.3.5 效能比較 23
2.3.6 佈局考量 24
2.3.7 佈局圖 25
2.4 晶片量測 26
2.4.1 穩壓電路 26
2.4.2 ADC輸出波形 29
2.4.3 結論與討論 29
第三章 應用於ZigBee接收機之低功率五位元2.4-MS/s
連續逼近式類比數位轉換器 32
3.1 簡介 32
3.2 電路架構與原理說明 34
3.2.1 CONTROL與SAL電路 35
3.2.2 Sample-and-subtract電路 36
3.2.3 動態比較器電路 37
3.3 模擬結果  38
3.3.1 DNL與INL分析結果 39
3.3.2 SFDR模擬結果 40
3.3.3 規格列表 41
3.3.4 效能比較 41
3.3.5 佈局考量 42
3.3.6 佈局圖 42
第四章 結論與成果 44

參考文獻 47
參考文獻 References
參考文獻

[1] R. van de Plassche, “CMOS integrated analog-to-digital and digital-to-analog converter,” Kluwer Academic, 2nd Edition, 2003.
[2] B. Razavi, “Principles of data conversion system design,” IEEE Press, 1995.
[3] J. Li, J. Zhang, B. Shen, X. Zeng, Y. Guo, and T. Tang, “A 10bit 30Msps CMOS A/D converter for high performance video applications,” 2005 Proceedings of the 31st European Solid-state Circuits Conference, (ESSCIRC 2005), pp. 523-526, Sept. 2005.
[4] M. Mohajerin, C. Chen, and E. Abdel-Raheem, “A new 12-b 40 MS/s, low-power, low-area pipeline ADC for video analog front ends,” 2005 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, (PACRIM 2005), pp. 597-600, Aug. 2005.
[5] O. A. Adeniran, A. Demosthenous, C. Clifton, S. Atungsiri, and R. Soin, “A CMOS low-power ADC for DVB-T and DVB-H systems,” Proceedings of the 2004 International Symposium on Circuits and Systems, (ISCAS '04), vol. 1, pp. I-209 - I-212, May 2004.
[6] www.zigbee.org

[7] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-uW successive approximation ADC,” IEEE J. Solid-state Circuits, vol. 38, no. 7, pp. 1261-1265, Jul. 2003.
[8] S. Mortezapour, and E. K. F. Lee, “A 1-V, 8-bit successive approximation ADC in standard CMOS process,” IEEE J. Solid-state Circuits, vol. 35, no. 4, pp. 642-646, Apr. 2000.
[9] C. S. Lin, and B. D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D Converter,” IEEE J. Solid-state Circuits, vol. 38, no. 1, pp. 54-62, Jan. 2003.
[10] T. B. Cho, P. R. Gray, “A 10 b, 20 Msample/s, 35mW pipeline A/D converter,” IEEE J. Solid-state Circuits, vol. 30, no. 3, pp. 166-172, Mar. 1995.
[11] B. Min, P. Kim, F. W. Bowman, III, D. M. Boisvert, and A. J. Aude, “A 69-mW 10-bit 80-Msample/s pipelined CMOS ADC,” IEEE J. Solid-state Circuits, vol. 38, no. 12, pp. 2031-2039, Dec. 2003.
[12] 鄭光偉, “一伏十位元CMOS導管式類比數位轉換器,” 國立台灣大學, 2002.
[13] S.-Y. Chuang, and T. L. Sculley, “A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 674-683, June 2002.
[14] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-state Circuits, vol. 32, no. 3, pp. 312-320, Mar. 1997.
[15] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill, 2001.
[16] P. E. Allen, and D. R. Holberg, “CMOS analog circuit design,” New York: Oxford, 2002.
[17] D. A. Johns, and K. Martin, “Analog integrated circuit design,” New York: John Wiley & Sons, Inc., 1997.
[18] B. Song, S. Lee, and M. F. Tompsett, “A 10-b 15-MHz CMOS recycling two-step A/D converter,” IEEE J. Solid-state Circuits, vol. 25, no. 6, pp. 1328-1338, Dec. 1990.
[19] R. J. Baker, “CMOS mixed-signal circuit design,” IEEE Press, 2002.
[20] S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-state Circuits, vol. 27, no. 3, pp. 351-358, Mar. 1992.

[21] A. M. Abo, and P. R. Gray, “A 1.5V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-state Circuits, vol. 34, no. 5, pp. 599-606, Mar. 1999.
[22] E. Culurciello, and A. Andreou, “An 8-bit, 1mW successive approximation ADC in SOI CMOS,” Proceedings of the 2003 International Symposium on Circuits and Systems, (ISCAS '03), vol. 1, pp. I-301 - I-304, May 2003.
[23] C.-C. Wang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “868/915 MHz ZigBee receiver for personal medical assistance,” 2006 International Conference on Consumer Electronics, (ICCE '06), pp. 461-462, Jan. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.246.254
論文開放下載的時間是 校外不公開

Your IP address is 3.14.246.254
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code