Responsive image
博碩士論文 etd-0707107-100717 詳細資訊
Title page for etd-0707107-100717
論文名稱
Title
非軸對稱橢圓錐光纖透鏡之研製與特性
Fabrication and Performance of Asymmetric Elliptic-Cone-Shaped Fiber Microlens
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-24
繳交日期
Date of Submission
2007-07-07
關鍵字
Keywords
橢圓錐形、非軸對稱、光纖透鏡、980nm、耦光
asymmetric, elliptic-cone-shaped, fiber microlenses, coupling, 980nm
統計
Statistics
本論文已被瀏覽 5680 次,被下載 1953
The thesis/dissertation has been browsed 5680 times, has been downloaded 1953 times.
中文摘要
  本研究提出一新型非軸對稱橢圓錐光纖透鏡架構,能以一次研磨之製程研製非軸對稱橢圓錐光纖透鏡,可提高單模光纖與980nm高功率單模幫浦雷射間之耦合效率的。此光纖透鏡之製造方式是在研磨光纖端面時,在光纖夾具上加裝一旋轉速度為光纖自轉速度兩倍之偏心配重塊,以此產生一週期性變動扭矩,使光纖下壓於研磨盤之正壓力產生週期性之變化,並以一次研磨之製程,將光纖端面研磨成橢圓錐形,再經電弧放電熔燒形成非軸對稱橢圓錐光纖透鏡;相較於過去研磨非軸對稱光纖透鏡之製造方式,此製程簡化了繁瑣之研磨次數而減少加工時間與成本,且可大幅減少透鏡中心與光纖中心之偏心程度而提高製程之重複性及良率。
  目前實驗已證實,以最佳化單一製程研製並分析30個非軸對稱橢圓錐光纖透鏡之成品,所得之平均軸心偏移量為0.4μm,平均耦光效率達71%,而最佳耦光效率可達83%。本研究成果耦光效率超過70%之良率為47%,而耦光效率超過60%之良率幾乎100%。
Abstract
A new scheme of asymmetric elliptic-cone-shaped microlens (AECSM) employing a single-step fabrication technique for efficient coupling between the high-power 980nm laser diodes and the single-mode fibers is proposed. The asymmetric elliptic-cone-shaped fiber endface (AECSFE) was fabricated by a single-step grinding and polishing a cleaved fiber by applying a periodically variable torque on the fiber ferrule to change the grinding pressure. The periodically variable torque was made by an eccentric mass with a constant rotation speed double that of the fiber. After the AECSFE was formed, an AECSM was obtained by heating the fiber tip in a fusing splicer. In comparison with the previous works on asymmetric fiber microlenses fabricated by the multi-step processes with complicated fabrication, the advantages of the AECSM structure for achieving high coupling are a single-step fabrication, a reproducible process, and a high-yield output.
In this study, we demonstrated that the average grinding offset of the AECSM structure for 30 measurements was about 0.4 μm, the average coupling efficiency was 71%, and the maximum of the measured coupling efficiency was 83%. The yield of the AECSM for coupling efficiency over 70% was 47%, for coupling efficiency over 60% was almost 100%.
目次 Table of Contents
中文摘要..................................................................................................... I
Abstract ......................................................................................................II
誌謝...........................................................................................................III
內容目錄.................................................................................................. IV
圖表目錄.................................................................................................VII
第一章 緒論...............................................................................................1
1.1 研究背景.....................................................................................1
1.2 研究動機.....................................................................................3
1.3 文獻回顧.....................................................................................4
1.4 論文架構...................................................................................10
第二章 理論基礎....................................................................................11
2.1 雷射特性簡介...........................................................................11
2.2 高斯光束與模態耦合理論.......................................................13
2.2.1 高斯光束.........................................................................13
2.2.2 模態匹配(Mode Matching).............................................15
2.2.3 耦光理論模型.................................................................18
2.3 非軸對稱橢圓錐光纖透鏡的設計...........................................20
2.3.1 非軸對稱橢圓錐光纖透鏡曲率設計.............................20
2.3.2 非軸對稱橢圓光纖透鏡研製方式簡介.........................21
2.3.3 一次研磨成型之非軸對稱橢圓錐形光纖成型原理.....22
第三章 非軸對稱橢圓錐光纖透鏡的製作............................................27
3.1 光纖研磨系統...........................................................................27
3.1.1 光纖研磨機台簡介.........................................................27
3.1.2 週期性變動扭矩系統.....................................................29
3.2 非軸對稱橢圓錐光纖透鏡製程...............................................33
3.2.1 光纖簡介.........................................................................33
3.2.2 橢圓光纖透鏡的製程.....................................................34
3.2.3 非軸對稱橢圓錐光纖透鏡之研製.................................36
3.3 非軸對稱橢圓錐光纖透鏡研製結果.......................................41
第四章 非軸對稱橢圓錐光纖透鏡的量測............................................46
4.1 非軸對稱橢圓錐光纖透鏡外型量測.......................................46
4.2 耦光效率量測............................................................................48
4.2.1 雷射功率量測.................................................................48
4.2.2 耦光效率量測.................................................................51
4.2.3 非軸對稱橢圓錐光纖透鏡良率分析.............................57
4.3 非軸對稱橢圓錐光纖透鏡遠場量測.......................................58
第五章 結論與未來工作........................................................................60
5.1 結論............................................................................................60
5.2 未來工作....................................................................................61
參考資料...................................................................................................62
參考文獻 References
1. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain
Erbium-Doped Traveling-Wave Fiber Amplifier, ” Optics Letters,
vol.12, pp. 888-890, 1987.
2. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I.
Laming, “Fabrication and Characterization of Low-Loss Optical Fibers
Containing Rare-Earth Ions, ” Journal of Lightwave Technology,
vol.LT-4, pp. 870-876, 1986.
3. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500
nm, ” Journal of Lightwave Technology, vol.9, pp.234-250, 1991.
4. M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S.
Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by
0.98μm Laser Diodes, “ IEEE Photonics Technology Letters, vol.1,
pp.422-424, 1989.
5. M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S.
Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+
-Doped Fiber Amplifiers Pumped by 0.98 and 1.48μm Laser Diodes ,
“ IEEE Photonics Technology Letters, vol.2, pp.205-207, 1990.
6. R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M.
B. Snipes, and J. F. Klem, “Reduced Coupling Loss Using a Tapere
Adiabatic-Following Fiber Coupler, ” IEEE Photonics Technology
Letters, vol.8, pp.1052-1054, 1996.
7. S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon,
“High Coupling Optical Design for Laser Diodes with Large Aspect
Ratio, ” IEEE Transactions on Advanced Packaging, vol.23,
pp.165-169, 2000.
8. R. A. Modavis and T. W. Webb, “Anamorphic Microlens for Laser
Diode to Single-Mode Fiber Coupling, ” IEEE Photonics Technology
Letters, vol.7, pp. 798-800, 1995.
9. Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated Micro-Cylindrical
Lens with Laser Diode for Single-Mode Fiber Coupling, ” IEEE
Photonics Technology Letters, vol.12, pp.1213-1215, 2000.
10. J. C. Livas, S. R. Chinn, E. S. Kintzer, J. N. Walpole, C. A. Wang and
L. J. Missaggia, “High-Power Erbium-Doped Fibre Amplifier with
975nm Tapered- Gain-Region Laser Pumps, ” Electronics Letters,
vol.30, pp.1054-1055, 1994.
11. J. H. Mitch, “Method and Apparatus for Precisely Positioning
Microlenses of Optical Fibers,” United States Patent, No. 4,818,263,
1989.
12. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young,
“Efficient Power Coupling from a 980-nm, Broad-Area Laser to a
Single-Mode Fiber Using a Wedge-Shaped Fiber Endface, ” Journal of
Lightwave Technology, vol.8, pp. 1313-1318, 1990.
13. H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for
Efficient Coupling to Elliptical Laser Beams, ” IEEE Photonics
Technology Letters, vol. 5, pp. 184-186, 1993.
14. H. Yoda and K. Shiraishi, “A New Scheme of a Lensed Fiber
Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling
Between High-Power Laser Diodes and Single-Mode Fiber, ” Journal
of Lightwave Technology, vol.19, pp. 1910-1917, 2001.
15. S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W. H.
Cheng, “ A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between
High-Power Laser Diodes and Single-Mode Fibers,” Journal of
Lightwave Technology, Vol. 22, No. 5, pp. 1374-1379, 2004.
16. S. M. Yeh, S. Y. Huang, C. H. Hsieh, and W. H. Cheng, “A New
Scheme of Conical-Wedge-Shaped Fiber Endface for High-Power
Laser to Single Mode Fiber Coupling,” Journal of Lightwave
Technology, Vol. 23, No. 4, pp. 1781-1786, 2005.
17. Saleh Bahaa E. A., Teich Malvin Carl, Fundamentals of Photonics,
John Wiley & Sons, p. 83, 1991.
18. W. Joyce, B. De Loach, “Alignment-Tolerant Optical-Fiber Tips for
Laser Transmitters,” Journal of Lightwave Technology, Vol. 3, pp. 755
-757, 1985.
19. C. A. Edwards, H.M. Presby, C. Dragone, “Ideal Microlenses for
Laser to Fiber Coupling,” Journal of Lightwave Technology, Vol. 11,
pp. 252 -257, 1993.
20. 呂昱寬, “新型四角錐形光纖透鏡,” 碩士論文, 國立中山大學通
訊工程研究所, 2003.
21. J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA,
McGraw-Hill, Ch. 4-5, 1968.
22. 葉斯銘, “橢圓光纖微透鏡之研究,” 博士論文, 國立中山大學光電
工程研究所, 2006.
23. F. W. Preston, “The Theory and Design of Plate Glass Polishing
Machines,” Journal of the Society of Glass Technology, Vol. 11, pp.
214-256, 1927.
24. User Guide for ULTRAPOL 1200 Series Polishing Bases.
25. 劉育達, “非對稱光纖端面加工機構設計之研究,” 碩士論文, 國立
中山大學機械與機電工程研究所, 2006.
26. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng,
“Asymmetric elliptic-cone-shaped microlens for efficient coupling to
high-power laser diodes,” Optics Express, Vol.15, pp. 1434, 2006.
27. 李宗憲, “透鏡光纖的光學模型與耦合效率之研究,” 碩士論文,
國立中央大學光電科學研究所, 2003.
28. 楊素華, 陳憶婷, 簡昕慧, 張詩意, 楊筑閔, “光纖通訊技術發展現
況,” 科學發展, October 2001.
29. 張守進, 劉醇星, 姬梁文年, “半導體雷射,” 科學發展349 期,
January 2002.
30. 丁原傑, “通訊用玻璃,” 科學發展406 期, October 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code