Responsive image
博碩士論文 etd-0707109-160309 詳細資訊
Title page for etd-0707109-160309
論文名稱
Title
應用功能性奈米粒子偵測目標生物小分子:(1)同半胱胺酸硫化內酯;(2)組胺酸
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-11
繳交日期
Date of Submission
2009-07-07
關鍵字
Keywords
金奈米粒子、同半胱胺酸硫化內酯、組胺酸
homocysteine thiolactone, gold nanoparticle, histidine
統計
Statistics
本論文已被瀏覽 5672 次,被下載 2253
The thesis/dissertation has been browsed 5672 times, has been downloaded 2253 times.
中文摘要
本論文以開發功能性奈米粒子偵測目標生物小分子為目的,共分為兩個部份:
一、利用修飾氟界面活性劑的金奈米粒子選擇性偵測同半胱胺酸硫化內酯:在本研究中,修飾氟界面活性劑的金奈米粒子(FSN-capped gold nanoparticles, FSN-AuNPs)將同時扮演兩種角色,分別為胺基硫醇分子(Aminothiols)的移除劑和同半胱胺酸硫化內酯(Homocysteine thiolactone, HTL)的感測器。由於HTL在pH 4.0到10.0的溶液環境下不會與FSN-AuNPs表面形成鍵結,因此無法導致FSN-AuNPs聚集。但相對地,同半胱胺酸(Homocysteine, Hcys)和半胱胺酸(Cysteine, Cys)則會因為Au-S鍵結的形成而使得FSN-AuNPs聚集。實驗結果顯示在最佳化條件下,FSN-AuNPs可吸附溶液中大於99%的Hcys和大於98%的Cys,是移除Hcys和Cys相當良好的奈米材料,且不會對HTL造成影響。接著只要透過離心,讓吸附在FSN-AuNPs表面上的Hcys和Cys沉澱在樣品管底部,再將含有HTL的上清液取出加入NaOH,待HTL水解成Hcys使FSN-AuNPs聚集之後,即可於胺基硫醇混合物中偵測到HTL。藉由調控FSN-AuNPs的濃度能有效改善HTL的偵測靈敏度;在最佳化條件下,可偵測HTL的最低濃度約100 nM。最後我們也將這項技術成功地運用於偵測尿液中的HTL。
二、利用修飾Tween 20界面活性劑的金奈米粒子結合鄰苯二醛之螢光衍生法選擇性偵測組胺酸:在這部份的研究中,我們利用修飾Tween 20界面活性劑之金奈米粒子(Tween 20-capped gold nanoparticles, Tween 20-AuNPs)做為溶液中胺基硫醇分子(Aminothiols)的移除劑,並且結合螢光衍生試劑──鄰苯二醛(o-Phthaldialdehyde, OPA),針對組胺酸(Histidine, His)設計出一項簡單、靈敏且具有高選擇性的偵測方法。根據實驗結果,48.0 nM Tween 20-AuNPs在低pH環境下,40 mM phosphate buffer(pH 2.0)及0.1 mM四級銨鹽(Cetyltrimethylammonium bromide, CTAB),能有效抓取溶液中95.7% homocysteine(HCys)、99.7% glutathione(GSH)、99.5% γ-glutamylcysteine(Glu-Cys),和僅2.1%的His,顯示在此條件下的Tween 20-AuNPs與Hcys、GSH和Glu-Cys之間有很強的親和力,但對His的吸引力則相當小。另一方面,由於OPA可選擇性地只針對Hcys、GSH、Glu-Cys和His進行螢光衍生,所以只要事先利用Tween 20-AuNPs將溶液中的Hcys、GSH、Glu-Cys移除,即可對His進行高選擇性的偵測。在最佳化的衍生與移除條件下,His的最低偵測極限(S/N=3)可達5.2 nM;此方法也成功地應用於偵測尿液及血清樣品中的His。
Abstract
none
目次 Table of Contents
第一章 利用修飾氟界面活性劑的金奈米粒子選擇性偵測同半胱胺酸硫化內酯
壹、前言 1
貳、實驗部份 9
一、藥品與樣品製備 9
二、儀器設備 12
三、實驗過程 13
參、結果與討論 15
一、FSN-AuNPs做為移除試劑 15
二、選擇性的探討 22
三、靈敏度、定量分析和應用 24
肆、結論 29
伍、參考文獻 30

第二章 利用修飾Tween 20界面活性劑的金奈米粒子結合鄰苯二醛之螢光衍生法選擇性偵測組胺酸
壹、前言 37
貳、實驗部份 43
一、藥品與樣品製備 43
二、儀器設備 48
三、實驗過程 50
參、結果與討論 51
一、利用Tween 20-AuNPs移除胺基硫醇分子 51
二、Tween 20-AuNPs濃度、CTAB濃度和溶液PH值探討 55
三、靈敏度、定量分析和應用 62
肆、結論 68
伍、參考文獻 69
參考文獻 References
第一章 利用修飾氟界面活性劑的金奈米粒子選擇性偵測同半胱胺酸硫化內酯
1. Mangum, J. H.; Murray, B. K.; North, J. A. “Vitamin B12 dependent methionine biosynthesis in cultured mammalian cells” Biochemistry 1969, 8, 3496-3499.
2. Clarke, R.; Daly, L.; Robinson, K.; Naughten, E.; Cahalane, S.; Fowler, B.; Graham, I. “Hyperhomocysteinemia: an independent risk factor for vascular disease” N. Engl. J. Med 1991, 324, 1149-1155.
3. Taylor, L. M.; Defrang, R. D.; Harris, E. J.; Porter, J. M. “The association of elevated plasma homocyst(e)ine with progression of symptomatic peripheral arterial disease” J. Vasc. Surg. 1991, 13, 128-136.
4. Clarke, R.; Smith, A. D.; Jobst, K. A.; Refsum, H.; Sutton, L.; Ueland, P. M. “Folate, vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease” Arch. Neurol. 1998, 55, 1449-1455.
5. Jakubowski, H.; Fersht, A. R. “Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases” Nucleic Acids Res. 1981, 9, 3105-3117.
6. Jakubowski, H. “The determination of homocysteine-thiolactone in biological samples” Anal. Biochem. 2002, 308, 112-119.
7. Jakubowski, H. “Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels” FASEB J. 1999, 13, 2277-2283.
8. Jakubowski, H. “Metabolism of homocysteine thiolactone in human cell cultures” J. Biol. Chem. 1997, 272, 1935-1942.
9. Kajan, J. P.; Marczak, L.; Kajan, L.; Skowronek, P.; Twardowski, T.; Jakubowski, H. “Modification by homocysteine thiolactone affects redox status of cytochrome c” Biochemistry 2007, 46, 6225-6231.
10. Sauls, D. L.; Lockhart, E.; Warren, M. E.; Lenkowski, A.; Wilhelm, S. E.; Hoffman, M. “Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia” Biochemistry 2006, 45, 2480-2487.
11. Jakubowski, H. “Biomedicine and diseases: Review. Molecular basis of homocysteine toxicity in humans” Cell. Mol. Life Sci. 2004, 61, 470–487.
12. Undas, A.; Perla, J.; Lacinski, M.; Trzeciak, W.; Kazmierski, R.; Jakubowski, H. “Autoantibodies against N-homocysteinylated proteins in humans implications for atherosclerosis ” Stroke 2004, 35, 1299-1304.
13. Jakubowski, H. “Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans” J. Nutr. 2000, 130, 377S-381S.
14. Chwatko, G.; Boers, G. H.; Strauss, K. A.; Shih, D. M.; Jakubowski, H. “Mutations in methylenetetrahydrofolate reductase or cystathionine β-syntase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice” FASEB J. 2007, 21, 1707-1713.
15. Jakubowski, H. “Pathophysiological consequences of homocysteine excess” J. Nutr. 2006, 136, 1741S-1749S.
16. Jakubowski, H. “The molecular basis of homocysteine thiolactone-mediated vascular disease” Clin. Chem. Lab. Med. 2007, 45, 1704-1716.
17. Gao, W.; Goldman, E.; Jakubowski, H. “Role of carboxy-terminal region in proofreading function of methionyl-tRNA synthetase in Escherichia coli.” Biochemistry 1994, 33, 11528-11535.
18. Jakubowski, H. “Proofreading in vivo. Editing of homocysteine by aminoacyl-tRNA synthetases in Escherichia coli”J. Biol. Chem. 1995, 270, 17672-17673.
19. du Vigneaud, V.; Patterson, W. I.; Hunt, M. “Opening of the ring of the thiolactone of homocysteine” J. Biol. Chem. 1938, 126, 217-231.
20. Jakubowski, H. “Mechanism of the Condensation of Homocysteine Thiolactone with Aldehydes” Chem. Eur. J. 2006, 12, 8039-8043.
21. Mukai, Y.; Togawa, T.; Suzuki, T.; Ohata, K.; Tanabe, S. “Determination of homocysteine thiolactone and homocysteine in cell cultures using high-performance liquid chromatography with fluorescence detection” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 767, 263-268.
22. Chwatko, G.; Jakubowski, H. “The determination of homocysteine-thiolactone in human plasma” Anal. Biochem. 2005, 337, 271-277.
23. Chwatko, G.; Jakubowski, H. “Urinary excretion of homocysteine-thiolactone in humans” Clin. Chem. 2005, 51, 408-415.
24. Jakubowski, H. “Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N- homocysteinylation” J. Biol. Chem. 2000, 275, 3957-3962.
25. Togawa, T.; Mukai, Y.; Ohata, K.; Suzuki, T.; Tanabe, S. “Measurement of homocysteine thiolactone hydrolase activity using high-performance liquid chromatography with fluorescence detection and polymorphisms of paraoxonase in normal human serum” J. Chromatogr. B 2005, 819, 67-72.
26. Daneshvar, P.; Yazdanpanah, M.; Cuthbert, C.; Cole, D. E. “Quantitative assay of plasma homocysteine thiolactone by gas chromatography/mass spectrometry” Rapid Commun. Mass Spectrom. 2003, 17, 358-362.
27. Daniel, M.-C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chem. Rev. 2004, 104, 293-346.
28. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles” Science 1997, 277, 1078-1081.
29. Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C. “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” J. Am. Chem. Soc. 2000, 122, 4640-4650.
30. Sato, K.; Hosokawa, K.; Maeda, M. “Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization” J. Am. Chem. Soc. 2003, 125, 8102-8103.
31. Nam, J.-M.; Park, S.-J.; Mirkin, C. A. “Bio-barcodes based on oligonucleotide-modified nanoparticles” J. Am. Chem. Soc. 2002, 124, 3820- 3821.
32. Niemeyer, C. M. “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science ” Angew. Chem., Int. Ed. 2001, 40, 4128-4158.
33. Mann, S.; Shenton, W.; Li, M.; Connolly, S.; Fitzmaurice, D. “Biologically programmed nanoparticle assembly ” Adv. Mater. 2000, 12, 147-150.
34. Liu, J.-W.; Lu, Y. “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles” J. Am. Chem. Soc. 2003, 125, 6642-6643.
35. Obare, S. O.; Hollowell, R. E.; Murphy, C. J. “Sensing strategy for lithium ion based on gold nanoparticles” Langmuir 2002, 18, 10407-10410.
36. Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. “Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles” Anal. Chem. 2002, 74, 330-335.
37. Lin, S.-Y.; Chen, C.-H.; Lin, M.-C.; Hsu, H.-F. “A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media” Anal. Chem. 2005, 77, 4821-4828.
38. Zhang, F. X.; Han, L.; Israel, L. B.; Daras, J. G.; Maye, M. M.; Ly, N. K.; Zhong, C. J. “Colorimetric detection of thiol-containing amino acids using gold nanoparticles” Analyst 2002, 127, 462-465.
39. Chen, S. J.; Chang, H. T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727-3734.
40. Lim, I. I.; Ip, W.; Crew, E.; Njoki, P. N.; Mott, D.; Zhong, C. J.; Pan, Y.; Zhou, S. “Homocysteine-mediated reactivity and assembly of gold nanoparticles” Langmuir 2007, 23, 826-833.
41. Huang, Y. F.; Chang, H. T. “Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2006, 78, 1485-1493.
42. Lu, C.; Zu, Y.; Yam, W. W. “Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles” Anal. Chem. 2007, 79, 666-672.
43. Lu, C.; Zu, Y. “Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles” Chem. Commun. 2007, 37, 3871-3873.
44. Wu, H.-P.; Huang, C.-C.; Cheng, T.-T.; Tseng, W.-L. “Sodium hydroxide as pretreatment and fluorosurfactant- capped gold nanoparticles as sensor for the highly selective detection of cysteine” Talanta 2008, 76, 347-352.
45. Lee, P. C.; Meisel, D. “Adsorption and surface-enhanced Raman of dyes on silver and gold sols” J. Phys. Chem. 1982, 86, 3391–3395.
46. Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. “DNA-directed synthesis of binary nanoparticle network materials” J. Am. Chem. Soc. 1998, 120, 12674-12675.
47. Li, F.; Zu, Y. “Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2,2‘-bipyridine)- ruthenium(II)/Tri-n-propylamine System: Lower Oxidation Potential and Higher Emission Intensity” Anal. Chem. 2004, 76, 1768-1722.
48. Lochman, P.; Adam, T.; Friedecky′ , D.; Hlı′dkova′, E.; Skopkova′, Z. “High-throughput capillary electrophoretic method for determination of total aminothiols in plasma and urine” Electrophoresis 2003, 24, 1200-1207.
49. Li, Z. P.; Duan, X. R.; Liu, C. H.; Du, B. A. “Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles” Anal. Biochem. 2006, 351, 18-25.

第二章 利用修飾Tween 20界面活性劑的金奈米粒子結合鄰苯二醛之螢光衍生法選擇性偵測組胺酸
1. Daniel, M.-C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chem. Rev. 2004, 104, 293-346.
2. Nilsson, C.; Birnbaum, S.; Nilsson, S. “Use of nanoparticles in capillary and microchip electrochromatography” J. Chromatogr. A 2007, 1168, 212-224.
3. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Stone, J. W.; Sisco, P. N.; Alkilany, A.; Kinard, B. E.; Hankins, P. “Chemical sensing and imaging with metallic nanorods” Chem. Commun. 2008, 544-557.
4. Katz, E.; Willner, I. “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications ” Angew. Chem. Int. Ed. 2004, 43, 6042-6108.
5. Nam, J.-M.; Stoeva, S. I.; Mirkin, C. A. “Bio-bar-code-based DNA detection with PCR-like sensitivity” J. Am. Chem. Soc. 2004, 126, 5932-5933.
6. Wang, K.-Y.; Chuang, S.-A.; Lin, P.-C.; Huang, L.-S.; Chen, S.-H.; Ouarda, S.; Pan, W.-H.; Lee, P.-Y.; Lin, C.-C.; Chen, Y.-J. “Multiplexed immunoassay: quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS” Anal. Chem. 2008, 80, 6159-6167.
7. Cole, J. R.; Dick, L. W.; Morgan, E. J.; McGown, L. B. “Affinity capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2007, 79, 273-279.
8. Scarberry, K. E.; Dickerson, E. B.; McDonald, J. F.; Zhang, Z. J. “Magnetic nanoparticle−peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells” J. Am. Chem. Soc. 2008, 130, 10258-10262.
9. Vanderpuije, B. N.; Han, G.; Rotello, V. M.; Vachet, R. W. “Mixed monolayer-protected gold nanoclusters as selective peptide extraction agents for MALDI-MS analysis” Anal. Chem. 2006, 78, 5491-5496.
10. Kong, X. L.; Huang, L. C. L.; Hsu, C.-M.; Chen, W.-H.; Han, C.-C.; Chang, H.-C. “High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis” Anal. Chem. 2005, 77, 259-265.
11. Agrawal, K.; Wu, H.-F. “Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry” Rapid Commun. Mass Spectrom. 2008, 22, 283-290.
12. Chen, W.-Y.; Chen, Y.-C. “MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction” Anal. Chem. 2007, 79, 8061-8066.
13. Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727-3734.
14. Tae, E. L.; Lee, S. H.; Lee, J. K.; Yoo, S. S.; Kang, E. J.; Yoon, K. B. “A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands” J. Phys. Chem. B 2005, 109, 22513-22522.
15. Huang, Y.-F.; Chang, H.-T. “Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2006, 78, 1485-1493.
16. Lee, K.-H.; Chiang, C.-K.; Lin, Z.-H.; Chang, H.-T. “Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices” Rapid Commun. Mass Spectrom. 2007, 21, 2023-2030.
17. Chen, C.-T.; Chen, Y.-C. “Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2005, 77, 5912-5919.
18. Wang, A.; Wu, C.-J.; Chen, S.-H. “Gold nanoparticle-assisted protein enrichment and electroelution for biological samples containing low protein concentration--a prelude of gel electrophoresis” J. Proteome Res. 2006, 5, 1488-1492.
19. Li, M.-D.; Cheng, T.-L.; Tseng, W.-L. “Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection” Electrophoresis 2009, 30, 388-395.
20. Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288-293.
21. Wang, H.; Campiglia, A. D. “Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography” Anal. Chem. 2008, 80, 8202-8209.
22. Liu, Y.; Li, Y.; Yan, X.-P. “Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals” Adv. Funct. Mater. 2008, 18, 1536-1543.
23. Gao, M.; Deng, C.; Fan, Z.; Yao, N.; Xu, X.; Yang, P.; Zhang, X. “A simple pathway to the synthesis of magnetic nanoparticles with immobilized metal ions for the fast removal of microcystins in water” Small 2007, 3, 1714-1717.
24. Tzeng, Y.-K.; Chang, C.-C.; Huang, C.-N.; Wu, C.-C.; Han, C.-C.; Chang, H.-C. “Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles” Anal. Chem. 2008, 80, 6809-6814.
25. Huang, C.-C.; Tseng, W.-L. “Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor” Anal. Chem. 2008, 80, 6345-6350.
26. Chen, G. N.; Wu, X. P.; Duan, J. P.; Chen, H. Q. “A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction” Talanta 1999, 49, 319-330.
27. Kusakari, Y.; Nishikawa, S.; Ishiguro, S.; Tamai, M. “Histidine-like immunoreactivity in the rat retina” Curr. Eye Res. 1997, 16, 600-604.
28. Watanabe, M.; Suliman, M. E.; Qureshi, A. R.; Garcia-Lopez E.; Bárány, P.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. “Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality” Am. J. Clin. Nutr. 2008, 87, 1860-1866.
29. Xiong, D.; Chen, M.; Li, H. “Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes” Chem. Commun. 2008, 880-882.
30. Li, X.; Ma, H.; Nie, L.; Sun, M.; Xiong, S. “A novel fluorescent probe for selective labeling of histidine” Anal. Chim. Acta 2004, 515, 255-260.
31. Li, X.; Ma, H.; Dong, S.; Duan, X.; Liang, S. “Selective labeling of histidine by a designed fluorescein-based probe” Talanta 2004, 62, 367-371.
32. Chen, Z.; Liu, J.; Han, Y.; Zhu, L. “A novel histidine assay using tetraphenylporphyrin manganese (III) chloride as a molecular recognition probe by resonance light scattering technique” Anal. Chim. Acta 2006, 570, 109-115.
33. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. “PVC-based Mn(III) porphyrin membrane-coated graphite electrode for determination of histidine” Anal. Chem. 1999, 71, 2502-2505.
34. Yang, R. H.; Wang, K. M.; Long, L. P.; Xiao, D.; Yang, X. H.; Tan, W. H. “A selective optode membrane for histidine based on fluorescence enhancement of meso-meso-linked porphyrin dimer” Anal. Chem. 2002, 74, 1088-1096.
35. Zhang, Y.; Yang, R.; Liu, F.; Li, K. “Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film” Anal. Chem. 2004, 76, 7336-7345.
36. Hortalá, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, “Designing the selectivity of the fluorescent detection of amino acids: a chemosensing ensemble for histidine” A. J. Am. Chem. Soc. 2003, 125, 20-21.
37. Ma, D.-L.; Wong, W.-L.; Chung, W.-H.; Chan, F.-Y.; So, P.-K.; Lai, T.-S.; Zhou, Z.-Y.; Leung, Y.-C.; Wong, K.-Y. “A highly selective luminescent switch-on probe for histidine/histidine-rich proteins and its application in protein staining” Angew. Chem. Int. Ed. 2008, 47, 3735-3739.
38. Mukai, Y.; Togawa, T.; Suzuki, T.; Ohata, K.; Tanabe, S. “Determination of homocysteine thiolactone and homocysteine in cell cultures using high-performance liquid chromatography with fluorescence detection” J. Chromatogr. B 2002, 767, 263-268.
39. Lee, P. C.; Meisel, D. “Adsorption and surface-enhanced Raman of dyes on silver and gold sols” J. Phys. Chem. 1982, 86, 3391–3395.
40. Hill, H. D.; Mirkin, C. A. “The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange” Nat. Protoc. 2006, 1, 324-326.
41. Lu, C., Zu, Y.; Yam, V. W.-W. “Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols” J. Chromatogr A. 2007, 1163, 328-332.
42. Wang, H.; Campiglia, A. D. “Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography” Anal. Chem. 2008, 80, 8202-8209.
43. Wanner, M.; Gerthsen, D.; Jester, S.-S.; Sarkar, B.; Schwederski, B. “Treatment of citrate-capped Au colloids with NaCl, NaBr and Na2SO4: a TEM, EAS and EPR study of the accompanying changes” Colloid Polym. Sci. 2005, 283, 783-792.
44. Garti, N. “Progress in stabilization and transport phenomena of double emulsions in food applications” Lebensm.-Wiss. Technol. 1997, 30, 222-235.
45. Burnette, W. N. “"Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A” Anal. Biochem. 1981, 112, 195-203.
46. Engvall, E.; Perlman, P. “Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G” Immunochemistry 1971, 8, 871-874.
47. Cooper, J. D. H.; Ogden, G.; J. McIntosh, J.; Turnell, D. C. “The stability of the o-phthalaldehyde/2-mercaptoethanol derivatives of amino acids: an investigation using high-pressure liquid chromatography with a precolumn derivatization technique” Anal. Biochem. 1984, 142, 98-102.
48. Ye, J.; Baldwin, R. P. “Determination of Amino Acids and Peptides by Capillary Electrophoresis and Electrochemical Detection at a Copper Electrode” Anal. Chem. 1994, 66, 2669-2674.
49. Pitkänen, H. T.; Oja, S. S.; Kemppainen, K.; Seppä, J. M.; Mero, A. A. “Serum amino acid concentrations in aging men and women” Amino Acids 2003, 24, 413-421.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code