Responsive image
博碩士論文 etd-0707109-170922 詳細資訊
Title page for etd-0707109-170922
論文名稱
Title
開發新型金奈米粒子感測器應用於生物分子與陰離子之分析
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-12
繳交日期
Date of Submission
2009-07-07
關鍵字
Keywords
金奈米粒子、碘離子
Gold nanoparticles, FITC, lysozyme
統計
Statistics
本論文已被瀏覽 5649 次,被下載 3869
The thesis/dissertation has been browsed 5649 times, has been downloaded 3869 times.
中文摘要
本篇論文將使用金奈米粒子當作基質材料,對其修飾上不同分子,再運用金奈米粒子聚集前後的顏色變化、及其具有高消光係數與寬吸收譜帶等光電特性,發展出功能性金奈米粒子並選擇性地對溶菌酶和碘物種進行方便且快速的偵測。
第一部份、以血清蛋白修飾之金奈米粒子感測溶菌酶:本研究中,我們利用水溶性之金奈米粒子(Gold nanoparticles,AuNPs)共價鍵結上人體血清蛋白(Human serum albumin,HSA),並且將其用來檢測溶菌酶(Lysozyme,Lys)。當加入高pI點之蛋白質於HSA 修飾之AuNPs(HSA-AuNPs)時,由於靜電作用力使兩者互相吸引,進而導致NP聚集,例如Lys、α-Chymotrypsinogen A與Conalbumin皆可觀察到此現象的發生。相反地,當加入低pI點之蛋白質,如Ovalbumin、Bovine serum albumin和α-Lactalbumin,溶液中的HSA-AuNPs則依然保持分散的狀態。透過基質輔助雷射脫付游離法(Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry),我們證明HSA-AuNPs和Lys之間確實存在著作用力,且發現HSA-AuNPs聚集程度與HSA濃度相關。相當有趣地,HSA-AuNPs對於Lys的選擇性可藉由調控緩衝溶液的pH值來獲得改善。在最佳化之pH與HSA濃度條件下,可利用HSA-AuNPs於高鹽類溶液中感測到Lys,既使有其他蛋白質的pI值非常接近於Lys也不會受到干擾;此偵測系統最低可以偵測到Lys的濃度為50 nM。最後,我們藉由HSA-AuNPs定量分析雞蛋蛋白中的Lys來證明此方法的實用性。
第二部份、使用螢光試劑Fluorescein-5-Isothiocyanate修飾之金奈米粒子作為碘離子偵測器:本研究是於金奈米粒子表面,修飾上螢光分子──Fluorescence-5-isothiocyanate(FITC),利用螢光恢復的方式來選擇性地偵測溶液中「總碘離子」的濃度。FITC分子在鹼性溶液中會呈現出高強度的螢光,但當其使用Isothiocyanate官能基吸附在金奈米粒子表面時,則會使螢光被削弱。依據上述特性,當FITC-AuNPs溶液中有碘離子(I-)存在時,由於I-也會吸附於金奈米粒子上,所以會促使原先吸附於金奈米粒子上之FITC分子被迫與金奈米粒子分離,而釋放到溶液中,使得螢光被釋放出來。相較於其他鹵素族陰離子(F-、Cl-、Br-)而言,I-與金奈米粒子表面的鍵結親和力較強,因此FITC-AuNPs對陰離子來說有較好的選擇性。此外使用Ascorbic acid將IO3-還原成I-後,也成功地使用FITC-AuNPs進行偵測;在最適化的條件下,分別對I-與IO3-進行定量分析,其可偵測到的最低濃度分別為10.0和50.0 nM。此方法除了具有容易製備、選擇性高、靈敏度高、低成本的優點外,還可應用於海水中的總碘離子的偵測。
Abstract
none
目次 Table of Contents
目錄
摘要I
目錄Ⅲ
圖目錄Ⅴ
表目錄IX
縮寫對照表X
第一章、以血清蛋白修飾之金奈米粒子感測溶菌酶
壹、前言1
貳、實驗部分5
一、藥品與溶液配製5
二、儀器裝製7
三、HSA-AuNPs之合成方法9
四、以HSA-AuNPs抓取Lysozyme9
五、樣品製備10
參、結果與討論11
一、Lysozyme誘發HSA-AuNPs聚集現象的機制探討11
二、研究Lys與HSA-AuNPs之間的相互作用15
三、HSA-AuNPs的選擇性的探討22
四、HSA-AuNPs的偵測靈敏度探討及其真實樣品應用27
肆、結論34
伍、參考文獻35
第二章、使用螢光試劑Fluorescein-5-Isothiocyanate修飾之金奈米粒子作為
碘離子偵測器
壹、前言44
貳、實驗部分48
一、藥品與溶液配製48
二、FITC-AuNPs之製備48
三、儀器裝製49
四、樣品配製與前處理50
參、結果與討論52
一、AuNPs使FITC之螢光淬熄現象54
二、FITC-AuNPs偵測溶液中的I離子57
三、AuNPs濃度與pH值的影響64
四、FITC-AuNPs對陰離子選擇性的探討67
五、FITC-AuNPs對I之偵測靈敏度探討及其 真實樣品應用70
肆、結論76
伍、參考文獻77
參考文獻 References
第一章 以血清蛋白修飾之金奈米粒子感測溶菌酶
1.Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.; Javier García de Abajo, F. “Modelling the Optical Response of Gold Nanoparticles” Chem. Soc. Rev. 2008, 37, 1792–1805.
2.(a)Mulvaney, P. “Surface Plasmon Spectroscopy of Nanosized Metal Particles.” Langmuir 1996, 12, 788-800.(b)Link, S.; Mohamed, M. B.; El-Sayed, M. A. “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant.” J. Phys. Chem. B 1999, 103, 3073-3077.(c)Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.” J. Phys. Chem. B 2003, 107, 668-677.
3.(a)He, X.; Zhong, Z.; Guo, Y.; Lv, J.; Xu, J.; Zhu, M.; Li, Y.; Liu, H.; Wang, S.; Zhu, Y.; Zhu, D. “Gold Nanoparticle-Based Monitoring of the Reduction of Oxidized to Reduced Glutathione.” Langmuir 2007, 23, 8815-8819.(b)Chah, S.; Hammond, M. R.; Zare, R. N. “Gold Nanoparticles as a Colorimetric Sensor for Protein Conformational Change.” Chem. Biol. 2005, 12, 323-328.
4.(a)Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. “A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. ” Nature 1996, 382, 607-609.(b)Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles.” Science 1997, 277, 1078-1081.(c)Reynolds, R. A.; Mirkin, C. A.; Letsinger, R. L. “Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides.” J. Am. Chem. Soc. 2000, 122, 3795-3796.
5.(a)Jiang, Z.; Sun, S.; Liang, A.; Huang, W.; Qin, A. “Gold-Labeled Nanoparticle-Based Immunoresonance Scattering Spectral Assay for Trace Apolipoprotein AI and Apolipoprotein B.” Clin. Chem. 2006, 52, 1389-1394.(b)Thanh, N. T. K.; Rosenzweig, Z. “Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles.” Anal. Chem. 2002, 74, 1624-1628.(c)Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. “A Whole Blood Immunoassay Using Gold Nanoshells.” Anal. Chem. 2003, 75, 2377-2381.
6.(a)Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. “Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II).” Angew. Chem. Int. Ed. 2007, 46, 6824-6828.(b)Kim, Y.; Johnson, R. C.; Hupp, J. T. “Gold Nanoparticle-Based Sensing of ‘Spectroscopically Silent’ Heavy Metal Ions.” Nano Lett. 2001, 1, 165-167.(c)Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-h. “Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles.” Anal. Chem. 2002, 74, 330-335.
7.de la Fuente J. M.; Penadés S. Biochim. Biophys. Acta 2006, 1760, 636-651.
8.(a)Sato, K.; Hosokawa, K.; Maeda, M.“Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization”J. Am. Chem. Soc. 2003, 125, 8102-8103.(b)Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y. “Simple and Rapid Colorimetric Enzyme Sensing Assays using Non-crosslinking Gold Nanoparticle Aggregation.” Chem. Commun. 2007, 3729-3731.
9.(a)Li, L.; Li, B. ; Qi, Y. ; Jin, Y. “Label-free Aptamer-based Colorimetric Detection of Mercuryions in Aqueous Media Using Unmodified Gold Nanoparticlesas Colorimetric Probe.” Anal. Bioanal. Chem. 2009, 393, 2051–2057.(b)Zhao, W.; Chiuman. W.; Lam, J. C. F.; Brook , M. A.; Li, Y. “Simple and Rapid Colorimetric Enzyme Sensing Assays using Non-crosslinking Gold Nanoparticle Aggregation.” Chem. Commun. 2007, 3729–3731.
10.Selvakannan, P.; Mandal, S.; Phadtare, S.; Pasricha, R.; Sastry M. “Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water-Dispersible.” Langmuir 2003, 19, 3545-3549.
11.(a)Huang, Y-F.; Chang, H-T. “Nuclease Resistance of Telomere-like Oligonucleotides Monitored in Live Cells by Fluorescence Anisotropy Imaging.” Anal. Chem. 2006, 78, 1485-1493.(b)Zhang, F. X.; Han, L.; Israel, L. B.; Daras, J. G.; Maye, M. M.; Ly, N. K.; Zhong, C-J. “Colorimetric Detection of Thiol-Containing Amino Acids Using Gold Nanoparticles.” Analyst 2002, 127, 462-465.(c)Lim, I. S.; Ip, W.; Crew, E.; Njoki, P. N.; Mott, D.; Zhong, C-J.; Pan, Y.; Zhou, S. “Homocysteine-Mediated Reactivity and Assembly of Gold Nanoparticles.” Langmuir 2007, 23, 826-833.
12.Souza, G. R.; Christianson, D. R.; Staquicini, F. I.; Ozawa, M. G.; Snyder, E.Y.; Sidman, R. L.; Miller, J. H.; Arap, W.; Pasqualini, R. “Networks of Gold Nanoparticles and Bacteriophage as Biological Sensors and Cell-Targeting Agents.” Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1215-1220.
13.Li, H.; Rothberg, L. “Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles.” Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14036-14039.
14.Levinson, S. S.; Elin, R. J.; Yam, L. “Light Chain Proteinuria and Lysozymuria in a Patient with Acute Monocytic Leukemia.” Clin. Chem. 2002, 48, 1131-1132.
15.Harrison, J. F.; Lunt, G. S.; Scott, P.; Blainey, J. D. “Urinary Lysozyme, Ribonuclease, and Low-Molecular-Weight Protein in Renal Disease.” Lancet 1968, 1, 371-375.
16.Klockars, M.; Reitamo, S.; Weber, T.; Kerttula, Y. “Cerebrospinal Fluid Lysozyme in Bacterial and Viral Meningitis.” Acta. Med. Scand. 1978, 203, 71-74.
17.Chang, H.-M.; Yang, C.-C.; Chang, Y.-C. “Rapid Separation of Lysozyme from Chicken Egg White by Reductants and Thermal Treatment.” J. Agric. Food Chem. 2000, 48, 161 -164.
18.Mine, Y.; Ma, F.; Lauriau, S. “Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme.” J. Agric. Food Chem. 2004, 52, 1088 -1094.
19.Weth, F.; Schroeder, T.; Buxtorf, U. P. Z. Lebensm. Unters. Forsch. 1988, 187, 541-545.
20.Liao, Y. H.; Brown, M. B.; Martin, G. P. J. Pharm. Pharmacol. 2001, 53, 549-554.
21.Johansson, B. G.; Malmquist, J. “Quantitative Immunochemical Determination of Lysozyme in Serum and Urine.” Scand. J. Clin. Lab. Invest. 1971, 27, 255-261.
22.Taylor, D. C.; Cripps, A. W.; Clancy, R. L. “Measurement of Lysozyme by an Enzyme-Linked Immunosorbent Assay.” J. Immunol. Methods 1992, 146, 55-61.
23.(a)Cheng, A. K. H.; Ge, B.; Yu, H-Z. “Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme.” Anal. Chem. 2007, 79, 5158-5164.(b)Kawde A. N.; Rodriguez M. C.; Lee T. M. H.; Wang J. “Label-Free Bioelectronic Detection of Aptamer–Protein Interactions.” Electrochem. Commun. 2005, 7, 537-540.(c)Rodriguez, M. C.; Kawde, A. N.; Wang, J. “Aptamer Biosensor for Label-Free Impedance Spectroscopy Detection of Proteins Based on Recognition-Induced Switching of the Surface Charge.” Chem. Commun. 2005, 4267-4269.
24.Stathakis, C.; Arriaga, E. A.; Lewis, D. F.; Dovichi, N. J.” Cationic and Anionic Polymeric Additives for Wall Deactivation and Selectivity Control in the Capillary Electrophoretic Separation of Proteins in Food Samples.” J. Chromatogr. A 1998, 817, 227-232.
25.Wu, H.-P.; Su, C.-L.; Chang, H.-C.; Tseng, W.-L.” Sample-First Preparation: A Method for Surface-Assisted Laser Desorption /Ionization Time-of-Flight Mass Spectrometry Analysis of Cyclic Oligosaccharides.” Anal. Chem. 2007, 79, 6215-6221.
26.Bayraktar, H.; Ghosh, P. S.; Rotello, V. M.; Knapp, M. J. “Disruption of Protein–Protein Interactions Using Nanoparticles: Inhibition of Cytochrome c Peroxidase.” Chem. Commun. 2006, 1390-1392.
27.(a)Moon, Y. U.; Curtis, R. A.; Anderson C. O.; Blanch, H. W.; Prausnitz, J. M. “Protein–Protein Interactions in Aqueous Ammonium Sulfate Solutions. Lysozyme and Bovine Serum Albumin(BSA).” J. Solut. Chem. 2000, 29, 699-718.(b)Miller, S. M.; Kato, A.; Nakai, S. “Sedimentation Equilibrium Study of the Interaction Between Egg White Lysozyme and Ovomucin.” J. Agric. Food Chem. 1982, 30, 1127-1132.
28.Wang, A.; Wu, C-J.; Chen, S-H. “Gold Nanoparticle-Assisted Protein Enrichment and Electroelution for Biological Samples Containing Low Protein Concentration- A Prelude of Gel Electrophoresis.” J. Proteome Res. 2006, 5, 1488-1492.
29.Okamoto, Y.; Kitagawa, F.; Otsuka, K. “Online Concentration and Affinity Separation of Biomolecules Using Multifunctional Particles in Capillary Electrophoresis Under Magnetic Field.” Anal. Chem. 2007, 79, 3041-3047.
30.McFarland, A. D.; Van Duyne, R. P. ” Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity.” Nano Lett. 2003, 3, 1057-1062.
31.Renner, C.; Piehler, J.; Schrader, T. “Arginine- and Lysine-Specific Polymers for Protein Recognition and Immobilization.” J. Am. Chem. Soc. 2006, 128, 620-628.
32.Kvasnika, F. “Determination of Egg White Lysozyme by On-Line Coupled Capillary Isotachophoresis with Capillary Zone Electrophoresis.” Electrophoresis 2003, 24, 860-864.
33.Hsieh, Y-L.; Chen, T-H.; Liu, C-Y. “Capillary Electro- Chromatographic Separation of Proteins on a Column Coated with Titanium Dioxide Nanoparticles.” Electrophoresis 2006, 27, 4288-4294.
第二章 使用螢光試劑Fluorescein-5-Isothiocyanate修飾之金奈米粒子作為碘離子偵測器
1.Daniel, M.-C.; Astruc, D. “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology.” Chem. Rev. 2004, 104, 293-346.
2.Rosi, N. L.; Mirkin, C. A. ”Nanostructures in Biodiagnostics.” Chem. Rev. 2005, 105, 1547–1562.
3.Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. “A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials.” Nature 1996, 82, 607-609.
4.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles.” Science 1997, 277, 1078-1081.
5.Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T. “Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors.” Anal. Chem. 2005, 77, 5735-5741.
6.Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W.; “Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells.” Anal. Chem, 2008, 80, 1067-1072.
7.Jiang, Z.; Sun, S.; Liang, A.; Huang, W.; Qin, A. “Gold-Labeled Nanoparticle-Based Immunoresonance Scattering Spectral Assay for Trace Apolipoprotein AI and Apolipoprotein B.” Clin. Chem. 2006, 52, 1389-1394.
8.Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. “A Whole Blood Immunoassay Using Gold Na
noshells.” Anal. Chem. 2003, 75, 2377-2381.
9.Norsten, T. B.; Frankamp, B. L.; Rotello, V. M. “Metal Directed Assembly of Terpyridine-Functionalized Gold Nanoparticles.” Nano Lett. 2002, 2, 1345-1348.
10.Yoosaf, K.; Ipe, B. I.; Suresh, C. H.; Thomas, K. G. “In Situ Synthesis of Metal Nanoparticles and Selective Naked-Eye Detection of Lead Ions from Aqueous Media.” J. Phys. Chem. C. 2007, 111, 12839-12847.
11.Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C. “A Gold Nanoparticle-Based Aptamer Target Binding Readout for ATP Assay.” Adv. Mater. 2007, 19, 3943–3946.
12.Zhang, J. L.; Wang, D.; Pan, S.; Song, F. Y. C.; Boey, H.; Zhang, C. F. “Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. ” small 2008, 4, 1196–1200.
13.Chen, C.; Song, G.; Ren, J.; Qu, X. “A Simple and Sensitive Colorimetric pH Meter Based on DNA Conformational Switch and Gold Nanoparticle Aggregation.” Chem. Commun. 2008, 6149–6151.
14.Rance, G. A.; Marsh D. H.; Khlobystov, A. N. “Extinction Coefficient Analysis of Small Alkanethiolate-Stabilised Gold Nanoparticles.” Chem. Phys. Lett. 2008, 460, 230-236.
15.Thomas, K. G.; Kamat, P. V. ”Chromophore-Functionalized Gold Nanoparticles.”Acc. Chem. Res. 2003, 36, 888-898.
16.Dubertret, B.; Calame M.; Libchaber, A. J. “Single-Mismatch Detection Using Gold-Quenched Fluorescent Oligonucleotides.” Nat. Biotech. 2001, 19, 365-370.
17.Maxwell, D. J.; Taylor, J. R.; Nie, S. “Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules.” J. Am. Chem. Soc. 2002, 124, 9606-9612.
18.Wang, W.; Chen, C.; Qian, M.; Zhao, X. S. “Aptamer Biosensor for Protein Detection Using Gold Nanoparticles.” Anal. Biochem. 2008, 373, 213-219.
19.Chen, S.-J.; Chang, H.-T. “Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation.” Anal. Chem. 2004, 76, 3727 -3734.
20.Huang, C.-C.; Chang, H.-T. “Selective Gold-Nanoparticle-Based “Turn-On” Fluorescent Sensors for Detection of Mercury(II)in Aqueous Solution.” Anal. Chem. 2006, 78, 8332-8338.
21.Huang, C.-C.; Chiu, S.-H.; Huang, Y.-F.; Chang, H.-T. “Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor.” Anal. Chem., 2007, 79, 4798-4804.
22.He, X.; Liu, H.; Li, Y.; Wang, S.; Li, Y.; Wang, N.; Xiao, J.; Xu, X. Zhu, D. “Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II)Ions.” Adv. Mater., 2005, 17, 2811-2815.
23.Lee, K. Y.; Kim, D. W.; Jinhwa Heo, J.; Kim, J. S.; Yang, J.-K.; Cheong, G.-W.; Han, S. W. “Novel Colorimetric Sensing of Anion with Gold Nanoparticles-Embedded Plasticized Polymer Membrane.” Bull. Korean Chem. Soc. 2006, 27, 2081-2083.
24.Gropper, S. S.; Groff, J. L. Advanced Nutrition and Human Metabolism 2005, 4, 468-473.
25.Verheesen, R. H.; Schweitzer, C. M. Med. Hypotheses, 2008, 71, 645-648.
26.Lee, P. C.; Meisel, D. “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.” J. Phys. Chem., 1982, 86, 3391-3395.
27.Zhao, W.; Chiuman, W.; Lam, J. C. F.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y.; “DNA Aptamer Folding on Gold Nanoparticles:From Colloid Chemistry to Biosensors.” J. Am. Chem. Soc. 2008, 130, 3610-3618.
28.Fan, C.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J.; “Beyond Superquenching: Hyper-Efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles.” Proc. Natl. Acad. Sci. USA, 2003, 100, 6297-6301.
29.Ghosh, S. K.; Pal, A.; Kundu, S.; Nath, S.; Pal, T.; “Fluorescence Quenching of 1-Methylaminopyrene Near Gold Nanoparticles:Size Regime Dependence of the Small Metallic Particles.” Chem. Phys. Lett. 2004, 395, 366-372.
30.Ao, L.; Gao, F.; Pan, B.; He, R.; Cui, D.; “Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles.” Anal. Chem. 2006, 78, 1104 -1106.
31.Zhang, S.; Ni, W.; Kou, X.; Yeung, M. H.; Sun, L.; Wang, J.; Yan, C. “Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers.“ Adv. Funct. Mater. 2007, 17, 3258-3266.
32.Doering, W. E.; Nie, S. “Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering.“ Anal. Chem. 2003, 75, 6171-6176.
33.Merican, Z.; Schiller, T. L.; Hawker, C. J.; Fredericks, P. M.; Blakey, I. ”Self-Assembly and Encoding of Polymer-Stabilized Gold Nanoparticles with Surface-Enhanced Raman Reporter Molecules.” Langmuir 2007, 23, 10539-10545.
34.Lakowicz, J. R. “Principles of Fluorescence Spectroscopy” Plenum Press: New York, 1983.
35.Ha, T. H.; Koo, H.-J.; Chung, B. H. “Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions.“ J. Phys. Chem. C 2007, 111, 1123-1130.
36.Deka, J.; Paul, A.; Ramesh, A.; Chattopadhyay, A. “Probing Au Nanoparticle Uptake by Enzyme Following the Digestion of a Starch−Au−Nanoparticle Composite.“ Langmuir 2008, 24, 9945-9951.
37.Fonseca, M. M.; Scofano, H. M.; Carvalho-Alves, P. C.; Barrabin, H. Mignaco, J. A. “Conformational Changes of the Nucleotide Site of the Plasma Membrane Ca2+-ATPase Probed by Fluorescence Quenching.” Biochemistry 2002, 41, 7483- 7489.
38.Cheng, W.; Dong, S.; Wang, E. Angew. Chem. Int. Ed. 2003, 42, 449-452.
39.Cheng, P. P. H.; Silvester, D.; Wang, G.; Kalyuzhny, G.; Douglas, A.; Murray, R. W. “Dynamic and Static Quenching of Fluorescence by 1−4 nm Diameter Gold Monolayer-Protected Clusters.” J. Phys. Chem. B 2006, 110, 4637-4644.
40.Magnussen, O. M. “Ordered Anion Adlayers on Metal Electrode Surfaces.“ Chem. Rev. 2002, 102, 679-726.
41.Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. “Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles.” Nano lett. 2008, 8, 2526-2529.
42.Shin, H.-S.; Oh-Shin, Y.-S.; Kim, J.-H.; Ryu, J.-K. “Trace Level Determination of Iodide, Iodine and Iodate by Gas Chromatography-Mass Spectrometry.” J. Chromatogr. A 1996, 732, 327-333.
43.Verma, K. K.; Jain, A.; Verma, A. “Determination of Iodide by High-Performance Liquid Chromatography After Precolumn Derivatization.“ Anal. Chem. 1992, 64, 1484-1489.
44.Malon, A.; Radu, A.; Qin, W.; Qin, Y.; Ceresa, A.; Maj-Zurawska, M.; Bakker, E.; Pretsch, E. “Improving the Detection Limit of Anion-Selective Electrodes: An Iodide-Selective Membrane with a Nanomolar Detection Limit.” Anal. Chem. 2003, 75, 3865 -3871.
45.Schramel, P.; Hasse, S. “Iodine Determination in Biological Materials by ICP-MS.“ Mikrochim Acta 1994, 116, 205-209.
46.Chen, Z.; Megharaj, M.; Naidu, R. “Speciation of Iodate and Iodide in Seawater by Non-Suppressed Ion Chromatography with Inductively Coupled Plasma Mass Spectrometry.” Talanta 2007, 72, 1842-1846.
47.Fujiwara, T.; Mohammadzai, I. U.; Inoue H.; Kumamaru, T. “Chemiluminescence Determination of Iodide and/or Iodine Using a Luminol–Hexadecyltrimethylammonium Chloride Reversed Micelle System Following On-Line Oxidation and Extraction.”Analyst 2000, 125, 759-763.
48.Corma, A.; Galletero, M. S.; García, H.; Palomares, E.; Fernando, R. “Pyrene Covalently Anchored on a Large External Surface Area Zeolite as a Selective Heterogeneous Sensor for Iodide.” Chem. Commun. 2002, 10, 1100-1101.
49.Leclerc, M.; Ho, H. A. “New Colorimetric and Fluorometric Chemosensor Based on a Cationic Polythiophene Derivative for Iodide-Specific Detection.” J. Am. Chem. Soc. 2003, 125, 4412-4413.
50.Niu, C.–G.; Guan, A.–L.; Zeng, G.–M.; Liu, Y.–G.; Huang, G.–H.; Gao, P.–F.; Gui, X.–Q. “A Ratiometric Fluorescence Halide Sensor Based on Covalently Immobilization of Quinine and Benzothioxanthene.” Analytica Chimica Acta 2005, 547, 221-228.
51.Vetrichelvan, M.; Nagarajan, R.; Valiyaveettil, S. ”Carbazole -Containing Conjugated Copolymers as Colorimetric/Fluorimetric Sensor for Iodide Anion.” Macromolecules 2006, 39, 8303-8310.
52.Lin, L.–R.; Fang, W.; Yu, Y.; Huang, R.–B.; Zheng, L.–S. “Selective Recognition Iodide in Aqueous Solution Based on Fluorescence Enhancement Chemosensor.“ Spectrochimica Acta A 2007, 67, 1403-1406.
53.Singh, N.; Jang, D. O. “Benzimidazole -Based Tripodal Receptor:Highly Selective Fluorescent Chemosensor for Iodide in Aqueous Solution.” Organic Letters 2007, 9, 1991-1994.
54.Rastegarzadeh, S.; Pourreza, N.; Saeedi, I. “An Optical Redox Chemical Sensor for Determination of Iodide.” Talanta 2009, 77, 1032-1036.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code