Responsive image
博碩士論文 etd-0707112-001532 詳細資訊
Title page for etd-0707112-001532
論文名稱
Title
快速IgE感測系統之利用非均分拋物線內插法所實現之無唯讀記憶體直接頻率合成器與頻移讀取電路
ROM-less DDFS Using Non-Equal Division Parabolic Polynomial Interpolation Method and Frequency-Shift Readout Circuit for Rapid IgE Measurement System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-07-07
關鍵字
Keywords
彎曲平板波、頻移讀取電路、重點照護檢驗、無雜訊動態範圍、直接數位頻率合成器
DDFS, FPW, frequency-shift readout circuit, rapid IgE measurement, SFDR
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題:以非均分拋物線內插法實現之無唯讀記憶體直接頻率合成器(DDFS)與頻移讀取電路,均實現於一個快篩IgE感測生醫晶片系統。
第一個主題提出一生醫IgE蛋白質濃度訊號讀取系統,並利用TSMC 1P6M 0.18 μm製程實現一生醫頻移讀取電路。本論文結合彎曲平板波(flexural plate-wave, FPW)生醫感測晶片,並將包含控制區塊、數位類比轉換器、壓控震盪器、訊號放大器、峰值偵測器、暫存器及減法器等電路實現於單一晶片。本論文係利用彎曲平板波晶片因負載蛋白質濃度不同而中心頻率偏移的現象,藉由產生一掃頻訊號,同時通過兩個彎曲平板波生醫感測晶片,其中一為實驗組,另一為對照組。讀取各自中心頻率,計算位移量後,可由查表法得到蛋白質負載濃度。相較於傳統醫療檢測儀器,本論文之生醫頻移讀取電路不僅可在10分鐘內得知檢測結果,更可大幅降低檢測的費用,更適於現今重點照護的醫療需求。
第二個主題探討π/ 2弧度弦波之分割方式以改善無雜訊動態範圍,並且利用TSMC 2P4M 0.35 μm製程來實現一無唯讀記憶體直接頻率合成器,係使用在本論文前一主題之讀取系統中。本論文提出之非均分拋物線內插法,係基於弦波的對稱性,僅需以π/ 2弧度弦波即可得到一完整弦波。本非均分拋物線內插法為將π/ 8弧度弦波區段使用同一拋物線係數,並將π/ 8至π/ 2弧度弦波區段平均分為十五段,並採用十五組拋物線係數來取得弦波數位值。在同樣十六區段的分段條件,本論文結合類線性內插法與位移式拋物線內插法以取得π/ 2弧度弦波數位值。此分段方法不僅可減小實際弦波與理想弦波的誤差,更可改善無雜訊動態範圍。
Abstract
This thesis consists of two topics. A frequency-shift readout circuit is integrated for the rapid IgE measurement biomedical system in the first half. Secondly, we present a ROM-less DDFS (direct digital frequency synthesis) using a non-equal division parabolic polynomial interpolation method, which is used as the frequency generator in the measurement system.
The first topic investigates the IgE concentration measurement system and realizes the readout circuit using TSMC 1P6M 0.18 μm CMOS technology. We integrate the flexural plate wave (FPW) sensor chips and an ASIC comprising control block, digital to analog convertor (DAC), OTA-C oscillators, amplifiers, peak detectors, registers, and a subtractor. By taking advantages of the characteristics that the central frequencies of the loaded FPW sensors will be shifted, sine waves with various frequencies are generated and swept through one pair of FPW sensors. The frequency difference of these sensors is then readout to get concentration by look-up table.
The second topic investigates the division method of a quarter sine wave to improve the spurious free dynamic range (SFDR) and realizes a ROM-less DDFS which is used as the frequency generator in the mentioned IgE measurement system. The proposed non-equal division parabolic polynomial interpolation method will generate a complete sine wave by a quarter of a sine digital signal owing to the symmetry. We combine the quasi-linear interpolation and an offset adjustment to derive the quarter sine wave digital signals. The proposed method not only reduces the absolute error between ideal sine wave and generated sine wave, it also improves SFDR.
目次 Table of Contents
致謝 ................................................................................................................................. i
摘要 ................................................................................................................................ ii
Abstract ............................................................................................................................ iii
圖次 ............................................................................................................................... vi
表次 ............................................................................................................................... ix
第一章 概論 ................................................................................................................... 1
1.1 前言 .............................................................................................................. 1
1.2 研究動機 ...................................................................................................... 5
1.2.1 快速IgE感測系統之頻移讀取電路 .................................................... 5
1.2.2 唯讀記憶體之直接頻率合成器 ............................................................ 6
1.3 相關文獻與研究討論 .................................................................................. 8
1.3.1 適用於FPW感測晶片之濃度偵測電路 .............................................. 8
1.3.2 使用內插法之ROM-less DDFS ........................................................... 9
1.4 論文大綱 .................................................................................................... 12
第二章 快速IgE感測系統之頻移讀取電路 .............................................................. 13
2.1 簡介 ............................................................................................................ 13
2.1.1 頻移讀取系統 ...................................................................................... 13
2.2 讀取電路系統 ............................................................................................ 14
2.3 頻移讀取電路設計 .................................................................................... 16
2.3.1 控制電路 .............................................................................................. 16
2.3.2 頻移讀取電路之數位類比轉換器 ...................................................... 17
2.3.3 頻移讀取電路之偏壓電路 .................................................................. 19
2.3.4 頻移讀取電路之電壓頻率轉換器 ...................................................... 20
2.3.5 頻移讀取電路之運算放大器 .............................................................. 23
2.3.6 頻移讀取電路之減法器 ...................................................................... 24
2.4 頻移讀取電路模擬與分析 ........................................................................ 26
2.5 晶片實作 .................................................................................................... 30
2.6 晶片量測與討論 ........................................................................................ 31
2.6.1 晶片量測結果與分析 .......................................................................... 31
2.6.2 預計規格與實測結果 .......................................................................... 38
第三章 快速IgE感測系統之利用非均分拋物線內插法所實現之無唯讀記憶
體直接頻率合成器 ......................................................................................... 39
3.1 簡介 ............................................................................................................ 39
3.2 非均分式DDFS方法與架構 .................................................................... 41
3.2.1 DDFS架構 ........................................................................................... 42
3.2.2 相位位元長度 ...................................................................................... 44
3.2.3 相位振幅轉換方法 .............................................................................. 45
3.3 電路實現與規格 ........................................................................................ 47
3.4 模擬、FPGA驗證與分析 ......................................................................... 49
3.4.1 非均分式DDFS模擬結果 .................................................................. 49
3.4.2 非均分式DDFS以FPGA驗證結果 .................................................. 50
3.4.3 非均分式DDFS驗證及模擬結果分析 .............................................. 52
第四章 結論、成果與未來工作 ................................................................................. 54
參考文獻 ........................................................................................................................ 57
參考文獻 References
[1] http://www.twcsi.org.tw/columnpage/expert/e157.aspx
[2] E. Masuda, T. M. Kinsella, J. E. Warner, T. Kinoshita, M. K. Bennett, and D. C. Anderson. “Methods of identifying compounds that modulate IL-4 receptor-mediated IgE synthesis utilizing a chloride intracellular channel 1 protein.” U.S. Patent 7 598 050, Oct. 6, 2009.
[3] J. Skaborn, B. Johansson, K. Rman, and L. Nordqvist, “Safety device for a pipette arm.” U.S. Patent 5 895 630, Apr. 24, 1999.
[4] M. Kesoulis, D. Soudris, C. Koukourlis, and A. Thanailakis, “Systematic methodology for designing low power direct digital frequency synthesisers,” IET Circuits, Devices & Systems, vol. 1, no. 4, pp. 293-304, Aug. 2007.
[5] J. Tierney, C. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Transactions on Audio and Electroacoustics, vol. 19, no. 1, pp. 48-57, Mar. 1971.
[6] A. Ashrafi and R. Adhami, “A direct digital frequency synthesizer utilizing quasi-linear interpolation method,” in Proc. of 37th IEEE Southeastern Symposium on System Theory, pp. 144-148, Mar. 2005.
[7] A. Ashrafi and R. Adhami, “An optimized direct digital frequency synthesizer based on even fourth order polynomial interpolation,” in Proc. of 38th IEEE Southeastern Symposium on System Theory, pp. 109-113, Mar. 2006.
[8] H. Jafari, A. Ayatollahi, and S. Mirzakuchaki, “A low power, high SFDR, ROM-less direct digital frequency synthesizer,” in Proc. of IEEE Conference on Electron Devices and Solid-State Circuits, pp. 829-832, Dec. 2005.
[9] D. De Caro and A. G. M. Strollo, “High-performance direct digital frequency synthesizers in 0.25 μm CMOS using dual-slope approximation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2220-2227, Nov. 2005.
[10] A. M. Sodagar and G. R. Lahiji, “A novel architecture for ROM-less sine-output direct digital frequency synthesizers by using the 2nd-order parabolic approximation,” in Proc. of IEEE/EIA International Frequency Control Symposium and Exhibition, pp. 284-289, Jun. 2000.
[11] Y. Song and B. Kim, “A 250 MHz direct digital frequency synthesizer with delta-sigma noise shaping,” in Proc. of IEEE International Solid-State Circuits Conference, pp. 472-509, Feb. 2004.
[12] H. J. Gould, B. J. Sutton, A. J. Beavil, R. L. Beavil, N. McCloskey, H. A. Coker, D. Fear, and L. Smurthwaite, “The biology of IgE and the basis of allergic disease,” Annual Review of Immunology, vol. 21, pp. 579-628, Apr. 2003.
[13] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sensors and Actuators B: Chemical, vol. 132, no. 1, pp. 340-348, May 2008.
[14] I.-Y. Huang, C.-Y. Lin, and C.-H. Sun, “A flexural plate wave (FPW) device with low insertion loss and high electromechanical coupling coefficient,” in Proc. of IEEE Sensors, pp. 488-491, Oct. 2011.
[15] F. Kato, S. Nishikawa, T. Yanagida, H. Ogi, and M. Hirao, “Reusable high-frequency electrodeless QCM biosensor with a bare quartz resonator embedded in a silicon microchannel,” in Proc. of 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 206-209, Jun. 2011.
[16] A. W. Wang, R. Kiwan, R. M. White, and R. L. Ceriani, “A silicon-based ultrasonic immunoassay for detection of breast cancer antigens,” in Proc. of International Conference on Solid State Sensors and Actuators, pp. 191-194, Jun. 1997.
[17] H. Wang, C. Sideris, and A. Hajimiri, “A frequency-shift based CMOS magnetic biosensor with spatially uniform sensor transducer gain,” in Proc. of IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010.
[18] D. Wobschall, “A Frequency Shift Dielectric Soil Moisture Sensor,” IEEE Transactions on Geoscience Electronics, vol. 16, no. 2, pp. 112-118, Apr. 1978.
[19] C.-C. Wang, C.-H. Hsu, C.-C. Lee, and J.-M. Huang, “A ROM-less DDFS based on a parabolic polynomial interpolation method with an offset,” Journal of Signal Processing Systems, vol. 64, no. 3, pp. 351-359, May 2010.
[20] J.-M. Huang, C.-C. Lee, C.-H. Hsu, and C.-C. Wang, “A ROM-less direct digital frequency synthesizer based on 16-segment parabolic polynomial interpolation,” in Proc. of 15th IEEE International Conference on Electronics, Circuits and Systems, pp. 1018-1021, Sep. 2008.
[21] D. Marano, G. Palumbo, and S. Pennisi, “A new advanced RNMC technique with dual-active current and voltage buffers for low-power high-load three-stage amplifiers,” in Proc. of IEEE International Symposium on Circuits and Systems, pp. 2725-2728, May 2009.
[22] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed, New York: Oxford University Press, 2002.
[23] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 2nd ed, New Jersey: John Wiley & Sons, Inc., 2008.
[24] D. Johns and K. Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, Inc., 1997.
[25] J. A. De Lima, “A linearly-tunable OTA-C sinusoidal oscillator for low-voltage applications,” in Proc. of IEEE International Symposium on Circuits and Systems, pp. 408-411, Aug. 2002.
[26] S. Brown and V. Zvonko, Fundamentals of digital logic with VHDL design, IA: McGraw-Hill, 2005.
[27] G. W. Kent and N.-H. Sheng, “A high purity, high speed direct digital synthesizer,” in Proc. of IEEE International Frequency Control Symposium, pp. 207-211, Jun. 1995.
[28] S.-S. Jeng, H.-C. Lin, and C.-Y. Wu, “High-performance DDFS design using the equi-section division method,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 12, pp. 2616-2626, Dec. 2010.
[29] C.-H. Hsu, Y.-D. Tsai, Y.-C. Chen, M.-C. Lee, I.-Y. Huang, and C.-C. Wang, “A Fast FPW Allergy Analyzer Prototype for Point of Care (POC),” in Proc. of IEEE International Conference on Consumer Electrons, pp. 544-545, Jan. 2012.
[30] C.-H. Hsu, Y.-C. Chen, and C.-C. Wang, “ROM-less DDFS using non-equal division parabolic polynomial interpolation method,” in Proc. of 13th International Symposium on Integrated Circuits, pp. 59-62, Dec. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.243.32
論文開放下載的時間是 校外不公開

Your IP address is 3.149.243.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code