Responsive image
博碩士論文 etd-0707112-015601 詳細資訊
Title page for etd-0707112-015601
論文名稱
Title
2.45 GHz ZigBee接收器前端與電池管理系統之具固定轉導放大器之三角積分類比數位轉換器
2.45 GHz ZigBee Receiver Frontend and Delta-Sigma ADC with Constant-gm Amplifier for Battery Management Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-18
繳交日期
Date of Submission
2012-07-07
關鍵字
Keywords
電池管理系統、ZigBee、接收器、三角積分類比數位轉換器、固定轉導放大器
BMS, ZigBee, receiver, Delta-Sigma ADC, constant-gm amplifier
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題:應用於家用節能系統之2.45 GHz ZigBee接收器前端與應用於電池管理系統之具固定轉導放大器之三角積分類比數位轉換器。

第一個主題探討應用於家庭節能系統之2.45 GHz ZigBee接收器前端,可在佈線不易之處取代有線通訊系統。本接收器設計提出了一低雜訊放大器,其增益於2.45 GHz時達17.376 dB,以及一含電流分流電晶體的雙平衡式吉伯特混波器,其雜訊指數為5.074 dB,而其三階截點為-7.234 dB。為了降低接收器的相位雜訊,採用了一個低相位雜訊之頻率合成器以及壓控振盪器,其相位雜訊達-137.7 dBc/Hz。本設計並以TSMC 0.18 μm CMOS製程實現並量測效能。

第二個主題為可應用於電池管理系統之具固定轉導放大器之三角積分類比數位轉換器,可應用於電池管理系統中的電池電壓偵測電路。本設計中提出一固定轉導放大器,可解決放大器非線性直流增益影響三角積分調變器性能的問題。此三角積分類比數位轉換器,前級為二階三角積分調變器,在訊號頻寬4 KHz、取樣頻率512 KHz與超取樣率128倍的情況下,SNR達85.2 dB,並具有12位元解析度。後級為數位降頻濾波器,將超取樣頻率降回奈奎氏取樣率(Nyquist rate)並輸出數位值,此數位降頻濾波器以Verilog硬體描述語言撰寫,使用FPGA驗證後,以混合訊號流程整合為一單晶片,並以以TSMC 0.25 μm 60V HV CMOS製程實現。
Abstract
This thesis consists of two topics: A 2.45 GHz ZigBee Receiver Frontend design for home energy-saving systems and a Delta-Sigma ADC with constant-gm amplifier for Battery Management Systems (BMS).
A 2.45 GHz ZigBee Receiver Frontend for home energy-saving systems is pre-sented in the first part of this thesis. The proposed ZigBee receiver can be used in areas where wireline solutions are hard to be realized. By employing an LNA at the very frontend of the receiver, the gain is simulated to be 17.376 dB at 2.45 GHz. Besides, by using the double-balanced Gilbert mixer with a current bleeding MOS transistor, the NF and the IIP3 of the mixer are only 5.074 dB and -7.234 dB, respectively. To reduce the phase noise of the receiver, a fractional-N frequency synthesizer with a complementary cross-coupled VCO is adopted. The phase noise of the fractional-N frequency synthe-sizer is 137.7 dBc/Hz. The proposed circuit is carried out and measured on silicon using the standard TSMC 0.18 μm CMOS process.
In the second topic, a Delta-Sigma ADC with constant-gm amplifier is presented. The proposed ADC is particularly designed for the voltage detection circuit in BMS. A constant-gm amplifier is also presented to resolve the nonlinearity of the amplifier de-grading the performance of Delta-Sigma modulator, which is the frontend of the Del-ta-Sigma ADC. With the 4 KHz signal bandwidth, 512 KHz sampling frequency, and 128 oversampling rate, it shows a 85.2 dB SNR, and 12-bit resolution. The backend of the ADC is the decimator, which reduces the sampling frequency compliant with the Nyquist rate rule. The decimator is realized by Verilog code and verified by FPGA. By following the mixed-signal flow, the ADC is realized on a single chip using the standard TSMC 0.25 μm 60V HV CMOS process.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 x
第一章 概論 1
1.1 前言 1
1.2 相關文獻與研究探討 5
1.2.1 ZigBee接收器之技術與文獻探討 5
1.2.2 三角積分類比數位轉換器之技術與文獻探討 8
1.3 研究動機 9
1.4 論文大綱 10
第二章 應用於節能系統之2.45 GHz ZigBee接收器前端電路 11
2.1 簡介 11
2.2 ZigBee Rx設計考量 12
2.3 ZigBee Rx電路架構 15
2.4 ZigBee Rx電路設計 16
2.4.1 低雜訊放大器 16
2.4.2 混波器 18
2.4.3 本地端振盪器 21
2.4.4 多相位濾波器 21
2.4.5 雙端轉單端放大器 22
2.4.6 多重回授濾波器 23
2.4.7 可變增益放大器 24
2.5 ZigBee Rx電路模擬與預計規格 25
2.5.1 電路模擬結果 25
2.5.2 預計規格與效能比較 31
2.6 晶片佈局 33
2.6.1 佈局平面圖 33
2.7 晶片實作與量測結果 34
第三章 具固定轉導放大器之三角積分類比數位轉換器 37
3.1 簡介 37
3.2 三角積分類比數位轉換器電路架構 37
3.3 三角積分類比數位轉換器電路設計 39
3.3.1 三角積分調變器 39
3.3.2 切換電容式積分器 40
3.3.3 固定轉導放大器 43
3.3.4 比較器 44
3.3.5 數位類比轉換器 45
3.3.6 時脈訊號產生器 46
3.3.7 數位降頻濾波器 47
3.3.8 偏壓電路 47
3.4 電路模擬與預計規格 49
3.4.1 三角積分類比數位轉換器電路模擬結果 49
3.4.2 預計規格與效能比較 53
3.5 晶片佈局 55
3.5.1 佈局平面圖 55
3.5.2 佈局考量 56
3.6 晶片實作與量測結果 57
第四章 研究成果與結論 60
參考文獻 63
參考文獻 References
[1] J. S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks,” IEEE Trans. Consumer Electron., vol. 52, no. 3, pp. 742-749, Aug. 2006.
[2] H. Eren and E. Fadzil, “Technical challenges for wireless instrument networks - a case study with ZigBee,” in Proc. IEEE Sensors Applications Symposium, pp. 1-6, Jun. 2007.
[3] N. Baker, “ZigBee and Bluetooth: strengths and weaknesses for industrial applica-tions,” J. of Computing & Control Engineering, vol. 16, no. 2, pp. 20-25, Apr. 2005.
[4] D. Danilov and P. H. L. Notten, “Adaptive battery management systems for the new generation of electrical vehicles,” in Proc. Vehicle Power and Propulsion Conf., pp. 317-320, Sep. 2009.
[5] D. V. Prokhorov, J. P. Christopherson, L. Qiao, K. Christopherson, K. Pattipati, and B. Pattipati, “Automotive battery management systems,” in Proc. AU-TOTESTCON, pp. 581-586, Sep. 2008.
[6] J. Garche and A. Jossen, “Battery management systems (BMS) for increasing bat-tery life time,” in Proc. 3rd International Conf. Telecommunications Energy Special, pp. 81-88, May 2000.
[7] H. Akagi and T. Hatada, “Voltage balancing control for a three-level diodeclamped converter in a medium voltage transformerless hybrid active filter,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 571-579, Mar. 2009.
[8] Y.-S. Lee and M.-W. Cheng, “Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1213-1224, Sep. 2006.
[9] R. Kiziel, A. Lateef, R. Sabbah, M. M. Farid, J. R. Selman, and S. Al-Hallaj, “Pas-sive control of temperature excursion and uniformity in highenergy Li-ion battery packs at high current and ambient temperature,” J. of Power Sources, vol. 183, no. 1, pp. 370-375, Aug. 2008.
[10] Y.-S. Lee and M.-W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297-1307, Oct. 2006.
[11] Y. Wu, X. Liao, W. Chen, and D. Chen, “A battery management system for elec-tric vehicle based on ZigBee and CAN,” in Proc. 2011 4th International Congress on Image and Signal Processing, vol. 5, pp. 2517-2521, Oct. 2011.
[12] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, Oct. 2005.
[13] Z. Yang, H. Hao, X. Guoqing, and Z. Zhiguo, “Hardware-in-the-loop simulation of pure electric vehicle control system,” in Proc. International Asia Conf. pp. 254-258, Feb. 2009.
[14] L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, “State-of-charge (SOC)- balanc-ing control of a battery energy storage system based on a cascade PWM converter,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1628-1636, Jun. 2009.
[15] H. Dai, X. Wei, and Z. Sun, “Model-based SOC estimation for high-power Li-ion battery packs used on FCHVs,” in Proc. High Technol. Lett., vol. 13, no. 3, pp. 322-326, 2007.
[16] J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering,” J. of Power Sources, vol. 174, no. 1, pp. 9-15, Nov. 2007.
[17] http://www.ibt-power.com/
[18] J. H. Aylor, A. Thieme, and B. W. Johnso, “A battery state-of-charge indicator for electric wheelchairs,” IEEE Trans. Ind. Electron, vol. 39, no. 5, pp. 398-409, Oct. 1992.
[19] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in Proc. Amer. Control Conf., vol. 2, pp. 1644-1649, Jun. 2001.
[20] J.-H. Kim, J.-W. Shin, C.-Y. Jeon, and B.-H. Cho, “Screening processes of Li-ion series battery pack for improved voltage/SOC balancing,” in Proc. IEEE Interna-tional Power Electronics Conf., pp. 1174-1179, Jun. 2010.
[21] S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries: Is-sues and life test result,” in Proc. IEEE International Telecommunications Energy Conf., pp. 439-446, Sep. 2000.
[22] http://www.ZigBee.org/
[23] W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, and D. Eggert, “A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee ap-plications,” IEEE J. of Solid-State Circuits, vol. 41, no. 12, pp. 2767-2775, Dec. 2006.
[24] A. Liscidini, M. Tedeschi, and R. Castello, “A 2.4-GHz 3.6 mW 0.35 mm quadra-ture front-end RX for ZigBee and WPAN applications,” in Proc. IEEE Interna-tional Solid-State Circuits Conf., pp. 370-371, Feb. 2008.
[25] A. Balankutty, S.-A. Yu, Y.-P. Feng, and P. R. Kinget, “A 0.6-V Zero-IF/Low-IF receiver with integrated Fractional-N synthesizer for 2.4-GHz ISM-band applica-tions,” IEEE J. of Solid-State Circuits, vol. 45, no. 3, pp. 538-553, Mar. 2010.
[26] C.-C. Wang, C.-C. Huang, J.-M. Huang, C.-Y. Chang. and C.-P. Li, “ZigBee 868/915 MHz modulator/demodulator for wireless personal area network,” IEEE Trans. on Very Large Scale Integration Systems, vol. 16, no. 7, pp. 936-939, Jul. 2008.
[27] Y. Wang, F. Zhao, and Y. Li, “A 2.38-mW 93.22-dB SNR third-order switched ca-pacitor feedforward delta sigma ADC,” in Proc. Laser Physics and Laser Technol-ogies, pp. 360-364, Nov. 2010.
[28] Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-V, 15-bit, Delta-Sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications,” IEEE J. of Solid-State Circuits, vol. 34, pp. 927-936, Jul. 1999.
[29] S. R. Norsworthy, I. G. Post, and H. S. Fetterman, “A 14bit 80 kHz Sigma-Delta A/D converter: modeling, design and performance evaluation,” IEEE J. of Sol-id-State Circuits, vol. 24, no. 2, pp. 256-266, Apr. 1989.
[30] S. R. Northworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, Piscataway: IEEE Press, 1997.
[31] H. Z.-Hoseini and I. Kale, “On the effects of finite and nonlinear DCgain of the amplifiers in switched-capacitor ΔΣ modulators,” in Proc. International Symposium on Circuits and Systems, pp. 2547-2550, May 2005.
[32] J. F. D.-Carrillo, J. M. Carrillo, and J. L. Ausin, “Transistor inversion level inde-pendent circuit technique for low-voltage rail-to-rail amplifiers,” in Proc. IEEE Proc-Circuits Devices Systems, vol. 151, pp. 565-571, Jan. 2005.
[33] J. H. Huijsing and D. Linebarger, “Low-Voltage operational amplifier with rail-to-rail input and output ranges,” IEEE J. of Solid-State Circuits, vol. 20, pp. 1144-1150, Dec. 1985.
[34] Y. Lu and R. H. Yao, “Low-voltage constant-gm rail-to-rail CMOS operational amplifier input stage,” J. of Solid-State Electronics, vol. 52, pp. 957-961, Jun. 2008.
[35] G.-D. Dai, P. Huang, L. Yang, and B. Wang, “A constant gm CMOS op-amp with rail-to-rail input/output stage,” in Proc. IEEE International Conf. Integrated Circuit Technology, pp. 123-125, Dec. 2010.
[36] T. W. Fischer, A. I. Karsilayan, and E. S.-Sinencio, “A rail-to-rail amplifier input stage with +0.35% gm fluctuation,” IEEE Trans. Circuits Systems-I, vol. 52, pp. 271-282, Feb. 2005.
[37] H. T. Friis, “Noise figure of radio receiver,” in Proc. Institute of Radio Engineers, vol. 32, pp. 419-422, Jul. 1944.
[38] D. K. Shaeffer and T. H. Lee, “A 1.5-V, I.5GHz CMOS low noise amplifier,” in Proc. IEEE International Solid-State Circuits Conf., vo1. 32, no. 5, pp. 745-759, May 1997.
[39] H. Darabi and J. Chiu, “A noise cancellation technique in active-RF CMOS mixers,” in Proc. IEEE International Solid-State Circuits Conf., vol. 1, pp. 544-545, Feb. 2005.
[40] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. of Solid-State Circuits, vol. 35, pp. 15-25, Jan. 2000.
[41] T.-J. Lee, W. Luo, S.-H. Yang, M.-H. Shih, K.-C. Kuo, and C.-C. Wang, “2.45 GHz ZigBee receiver frontend for HAN with smart meter,” in Proc. 2011 13th In-ternational Symposium Integrated Circuits Conf., pp. 480-483, Dec. 2011.
[42] D. Andrea, Battery management systems for large lithium ion battery packs, MA: Artech House, 2010.
[43] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
[44] R. Hogervost, J. P. Tero, and J. H. Huijsing, “Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic zener diode,” IEEE J. of Solid-State Circuits, vol. 31, no. 7, pp. 1035-1040, Jul. 1996.
[45] J.-L. Lai, T.-Y. Lin, C.-F. Tai, Y.-T. Lai, and R.-J. Chen, “Design a low-noise op-erational amplifier with constant-gm,” in Proc. Society of Instrument and Control Engineers, pp. 322-326, Oct. 2010.
[46] J. M. Carrillo, J. F. D.-Carrillo, G. Torelli, and J. Austin, “Constant-gm con-stant-slew-rate high bandwidth low-voltage rail-to-rail CMOS input stage for VLSI cell libraries,” IEEE J. of Solid-State Circuits, vol. 38, pp. 1364-1372, Jul. 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.28.48
論文開放下載的時間是 校外不公開

Your IP address is 3.17.28.48
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code